Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 8(37): 33426-33436, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37744819

RESUMO

Peptide nucleic acids (PNAs) are antisense molecules with excellent polynucleotide hybridization properties; they are resistant to nuclease degradation but often have poor cell permeability leading to moderate cellular activity and limited clinical results. The addition of cationic substitutions (positive charges) to PNA molecules greatly increases cell permeability. In this report, we describe the synthesis and polynucleotide hybridization properties of a novel cationic/amino-alkyl nucleotide base-modified PNA (OPNA). This study was designed to quantitate the effect the cationic/amino-alkyl nucleotide base modification had on the kinetic and thermodynamic properties of OPNA-DNA hybridization using surface plasmon resonance and UV thermal melt studies. Kinetic studies reveal a favorable 10-30 fold increase in affinity for a single cationic modification on the base of an adenine, cytosine, or guanidine OPNA sequence compared to the nonmodified PNA strand. The increase in affinity is correlated directly with a favorable decrease in the dissociation rate constant and increase in the association rate constant. Introducing additional amino-alkyl base modifications further favors a decrease in the dissociation rate (3-10-fold per amino-alkyl). The thermodynamics driving the OPNA hybridization is promoted by an additional favorable -80 kJ/mol enthalpy of binding for a single amino-alkyl modification compared to the PNA strand. This increase in enthalpy is consistent with an ion-ion interaction with the DNA strand. These kinetic and thermodynamic hybridization studies reveal for the first time that this type of cationic/amino-alkyl base-modified PNA has favorable hybridization properties suitable for development as an antisense oligomer.

2.
Chem Biol Drug Des ; 101(4): 837-847, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36434749

RESUMO

Oncology clinical development programs have targeted the RAS/RAF/MEK/ERK signaling pathway with small molecule inhibitors for a variety of cancers during the past decades, and most therapies have shown limited or minimal success. Specific BRAF and MEK inhibitors have shown clinical efficacy in patients for the treatment of BRAF-mutant melanoma. However, most cancers have shown treatment resistance after several months of inhibitor usage, and reports indicate resistance is often associated with the reactivation of the MAPK signaling pathway. It is widely accepted that an effective MAPK therapy will have a significant impact on curtailing cancer growth and improving patient survival. However, despite more than three decades of intense research and pharmaceutical industry efforts, an FDA-approved, effective anti-cancer ERK inhibitor has yet to be developed. Here, we present the design, optimization, and biological characterization of ERK1/2 inhibitors that block catalytic phosphorylation of downstream substrates such as RSK but also modulate the phosphorylation of ERK1/2 by MEK without directly inhibiting MEK. Our series of dual mechanism ERK1/2 inhibitors, in which we incorporated a triazolopyridinone core, may present potential benefits for enhancing efficacy and addressing the emergence of treatment resistance.


Assuntos
Sistema de Sinalização das MAP Quinases , Neoplasias , Humanos , Proteínas Proto-Oncogênicas B-raf/metabolismo , Neoplasias/tratamento farmacológico , Transdução de Sinais , Inibidores de Proteínas Quinases/química , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/uso terapêutico , Mutação , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA