Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 14063, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982083

RESUMO

Long non-coding RNAs (lncRNAs) are a prominent class of eukaryotic regulatory genes. Despite the numerous available transcriptomic datasets, the annotation of plant lncRNAs remains based on dated annotations that have been historically carried over. We present a substantially improved annotation of Arabidopsis thaliana lncRNAs, generated by integrating 224 transcriptomes in multiple tissues, conditions, and developmental stages. We annotate 6764 lncRNA genes, including 3772 that are novel. We characterize their tissue expression patterns and find 1425 lncRNAs are co-expressed with coding genes, with enriched functional categories such as chloroplast organization, photosynthesis, RNA regulation, transcription, and root development. This improved transcription-guided annotation constitutes a valuable resource for studying lncRNAs and the biological processes they may regulate.


Assuntos
Arabidopsis , RNA Longo não Codificante , Arabidopsis/metabolismo , Anotação de Sequência Molecular , RNA Longo não Codificante/metabolismo , Transcriptoma/genética
2.
RNA ; 26(7): 784-793, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32241834

RESUMO

Long noncoding RNAs (lncRNAs) have recently emerged as prominent regulators of gene expression in eukaryotes. LncRNAs often drive the modification and maintenance of gene activation or gene silencing states via chromatin conformation rearrangements. In plants, lncRNAs have been shown to participate in gene regulation, and are essential to processes such as vernalization and photomorphogenesis. Despite their prominent functions, only over a dozen lncRNAs have been experimentally and functionally characterized. Similar to its animal counterparts, the rates of sequence divergence are much higher in plant lncRNAs than in protein coding mRNAs, making it difficult to identify lncRNA conservation using traditional sequence comparison methods. Beyond this, little is known about the evolutionary patterns of lncRNAs in plants. Here, we characterized the splicing conservation of lncRNAs in Brassicaceae. We generated a whole-genome alignment of 16 Brassica species and used it to identify synthenic lncRNA orthologs. Using a scoring system trained on transcriptomes from A. thaliana and B. oleracea, we identified splice sites across the whole alignment and measured their conservation. Our analysis revealed that 17.9% (112/627) of all intergenic lncRNAs display splicing conservation in at least one exon, an estimate that is substantially higher than previous estimates of lncRNA conservation in this group. Our findings agree with similar studies in vertebrates, demonstrating that splicing conservation can be evidence of stabilizing selection. We provide conclusive evidence for the existence of evolutionary deeply conserved lncRNAs in plants and describe a generally applicable computational workflow to identify functional lncRNAs in plants.


Assuntos
Sequência Conservada/genética , Splicing de RNA/genética , RNA Longo não Codificante/genética , RNA de Plantas/genética , Arabidopsis/genética , Brassica/genética , Evolução Molecular , Genoma de Planta/genética , RNA Mensageiro/genética
3.
Genome Biol Evol ; 11(1): 319-334, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30534962

RESUMO

Cycads are the only early seed plants that have evolved a specialized root to host endophytic bacteria that fix nitrogen. To provide evolutionary and functional insights into this million-year old symbiosis, we investigate endophytic bacterial sub-communities isolated from coralloid roots of species from Dioon (Zamiaceae) sampled from their natural habitats. We employed a sub-community co-culture experimental strategy to reveal both predominant and rare bacteria, which were characterized using phylogenomics and detailed metabolic annotation. Diazotrophic plant endophytes, including Bradyrhizobium, Burkholderia, Mesorhizobium, Rhizobium, and Nostoc species, dominated the epiphyte-free sub-communities. Draft genomes of six cyanobacteria species were obtained after shotgun metagenomics of selected sub-communities. These data were used for whole-genome inferences that suggest two Dioon-specific monophyletic groups, and a level of specialization characteristic of co-evolved symbiotic relationships. Furthermore, the genomes of these cyanobacteria were found to encode unique biosynthetic gene clusters, predicted to direct the synthesis of specialized metabolites, mainly involving peptides. After combining genome mining with detection of pigment emissions using multiphoton excitation fluorescence microscopy, we also show that Caulobacter species co-exist with cyanobacteria, and may interact with them by means of a novel indigoidine-like specialized metabolite. We provide an unprecedented view of the composition of the cycad coralloid root, including phylogenetic and functional patterns mediated by specialized metabolites that may be important for the evolution of ancient symbiotic adaptations.


Assuntos
Caulobacter/genética , Cianobactérias/genética , Cycadopsida/microbiologia , Fixação de Nitrogênio , Raízes de Plantas/microbiologia , Evolução Biológica , Caulobacter/isolamento & purificação , Caulobacter/metabolismo , Cianobactérias/isolamento & purificação , Cianobactérias/metabolismo , Endófitos , Família Multigênica , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA