Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecology ; 100(4): e02636, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30693479

RESUMO

The forests of western Amazonia are among the most diverse tree communities on Earth, yet this exceptional diversity is distributed highly unevenly within and among communities. In particular, a small number of dominant species account for the majority of individuals, whereas the large majority of species are locally and regionally extremely scarce. By definition, dominant species contribute little to local species richness (alpha diversity), yet the importance of dominant species in structuring patterns of spatial floristic turnover (beta diversity) has not been investigated. Here, using a network of 207 forest inventory plots, we explore the role of dominant species in determining regional patterns of beta diversity (community-level floristic turnover and distance-decay relationships) across a range of habitat types in northern lowland Peru. Of the 2,031 recorded species in our data set, only 99 of them accounted for 50% of individuals. Using these 99 species, it was possible to reconstruct the overall features of regional beta diversity patterns, including the location and dispersion of habitat types in multivariate space, and distance-decay relationships. In fact, our analysis demonstrated that regional patterns of beta diversity were better maintained by the 99 dominant species than by the 1,932 others, whether quantified using species-abundance data or species presence-absence data. Our results reveal that dominant species are normally common only in a single forest type. Therefore, dominant species play a key role in structuring western Amazonian tree communities, which in turn has important implications, both practically for designing effective protected areas, and more generally for understanding the determinants of beta diversity patterns.


Assuntos
Biodiversidade , Árvores , Ecossistema , Florestas , Peru , Clima Tropical
2.
Glob Ecol Biogeogr ; 23(8): 935-946, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26430387

RESUMO

AIM: The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset. LOCATION: Tropical forests of the Amazon basin. The permanent archive of the field plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1. METHODS: Two recent pantropical RS maps of vegetation carbon are compared to a unique ground-plot dataset, involving tree measurements in 413 large inventory plots located in nine countries. The RS maps were compared directly to field plots, and kriging of the field data was used to allow area-based comparisons. RESULTS: The two RS carbon maps fail to capture the main gradient in Amazon forest carbon detected using 413 ground plots, from the densely wooded tall forests of the north-east, to the light-wooded, shorter forests of the south-west. The differences between plots and RS maps far exceed the uncertainties given in these studies, with whole regions over- or under-estimated by > 25%, whereas regional uncertainties for the maps were reported to be < 5%. MAIN CONCLUSIONS: Pantropical biomass maps are widely used by governments and by projects aiming to reduce deforestation using carbon offsets, but may have significant regional biases. Carbon-mapping techniques must be revised to account for the known ecological variation in tree wood density and allometry to create maps suitable for carbon accounting. The use of single relationships between tree canopy height and above-ground biomass inevitably yields large, spatially correlated errors. This presents a significant challenge to both the forest conservation and remote sensing communities, because neither wood density nor species assemblages can be reliably mapped from space.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA