Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mol Ecol Resour ; : e13978, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775206

RESUMO

Amplicon sequencing is an effective and increasingly applied method for studying viral communities in the environment. Here, we present vAMPirus, a user-friendly, comprehensive, and versatile DNA and RNA virus amplicon sequence analysis program, designed to support investigators in exploring virus amplicon sequencing data and running informed, reproducible analyses. vAMPirus intakes raw virus amplicon libraries and, by default, performs nucleotide- and amino acid-based analyses to produce results such as sequence abundance information, taxonomic classifications, phylogenies and community diversity metrics. The vAMPirus analytical framework leverages 16 different opensource tools and provides optional approaches that can increase the ratio of biological signal-to-noise and thereby reveal patterns that would have otherwise been masked. Here, we validate the vAMPirus analytical framework and illustrate its implementation as a general virus amplicon sequencing workflow by recapitulating findings from two previously published double-stranded DNA virus datasets. As a case study, we also apply the program to explore the diversity and distribution of a coral reef-associated RNA virus. vAMPirus is streamlined within Nextflow, offering straightforward scalability, standardization and communication of virus lineage-specific analyses. The vAMPirus framework is designed to be adaptable; community-driven analytical standards will continue to be incorporated as the field advances. vAMPirus supports researchers in revealing patterns of virus diversity and population dynamics in nature, while promoting study reproducibility and comparability.

2.
ISME J ; 17(12): 2389-2402, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37907732

RESUMO

Filamentous viruses are hypothesized to play a role in stony coral tissue loss disease (SCTLD) through infection of the endosymbiotic dinoflagellates (Family Symbiodiniaceae) of corals. To evaluate this hypothesis, it is critical to understand the global distribution of filamentous virus infections across the genetic diversity of Symbiodiniaceae hosts. Using transmission electron microscopy, we demonstrate that filamentous virus-like particles (VLPs) are present in over 60% of Symbiodiniaceae cells (genus Cladocopium) within Pacific corals (Acropora hyacinthus, Porites c.f. lobata); these VLPs are more prevalent in Symbiodiniaceae of in situ colonies experiencing heat stress. Symbiodiniaceae expelled from A. hyacinthus also contain filamentous VLPs, and these cells are more degraded than their in hospite counterparts. Similar to VLPs reported from SCTLD-affected Caribbean reefs, VLPs range from ~150 to 1500 nm in length and 16-37 nm in diameter and appear to constitute various stages in a replication cycle. Finally, we demonstrate that SCTLD-affected corals containing filamentous VLPs are dominated by diverse Symbiodiniaceae lineages from the genera Breviolum, Cladocopium, and Durusdinium. Although this study cannot definitively confirm or refute the role of filamentous VLPs in SCTLD, it demonstrates that filamentous VLPs are not solely observed in SCTLD-affected corals or reef regions, nor are they solely associated with corals dominated by members of a particular Symbiodiniaceae genus. We hypothesize that filamentous viruses are a widespread, common group that infects Symbiodiniaceae. Genomic characterization of these viruses and empirical tests of the impacts of filamentous virus infection on Symbiodiniaceae and coral colonies should be prioritized.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/genética , Dinoflagellida/genética , Recifes de Corais , Simbiose , Oceanos e Mares
3.
Commun Biol ; 6(1): 566, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264063

RESUMO

Endogenous viral elements (EVEs) offer insight into the evolutionary histories and hosts of contemporary viruses. This study leveraged DNA metagenomics and genomics to detect and infer the host of a non-retroviral dinoflagellate-infecting +ssRNA virus (dinoRNAV) common in coral reefs. As part of the Tara Pacific Expedition, this study surveyed 269 newly sequenced cnidarians and their resident symbiotic dinoflagellates (Symbiodiniaceae), associated metabarcodes, and publicly available metagenomes, revealing 178 dinoRNAV EVEs, predominantly among hydrocoral-dinoflagellate metagenomes. Putative associations between Symbiodiniaceae and dinoRNAV EVEs were corroborated by the characterization of dinoRNAV-like sequences in 17 of 18 scaffold-scale and one chromosome-scale dinoflagellate genome assembly, flanked by characteristically cellular sequences and in proximity to retroelements, suggesting potential mechanisms of integration. EVEs were not detected in dinoflagellate-free (aposymbiotic) cnidarian genome assemblies, including stony corals, hydrocorals, jellyfish, or seawater. The pervasive nature of dinoRNAV EVEs within dinoflagellate genomes (especially Symbiodinium), as well as their inconsistent within-genome distribution and fragmented nature, suggest ancestral or recurrent integration of this virus with variable conservation. Broadly, these findings illustrate how +ssRNA viruses may obscure their genomes as members of nested symbioses, with implications for host evolution, exaptation, and immunity in the context of reef health and disease.


Assuntos
Antozoários , Dinoflagellida , Vírus de RNA , Animais , Dinoflagellida/genética , Genoma , Antozoários/genética , Vírus de RNA/genética , Recifes de Corais
4.
Nat Commun ; 14(1): 2915, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217477

RESUMO

Stony coral tissue loss disease (SCTLD), one of the most pervasive and virulent coral diseases on record, affects over 22 species of reef-building coral and is decimating reefs throughout the Caribbean. To understand how different coral species and their algal symbionts (family Symbiodiniaceae) respond to this disease, we examine the gene expression profiles of colonies of five species of coral from a SCTLD transmission experiment. The included species vary in their purported susceptibilities to SCTLD, and we use this to inform gene expression analyses of both the coral animal and their Symbiodiniaceae. We identify orthologous coral genes exhibiting lineage-specific differences in expression that correlate to disease susceptibility, as well as genes that are differentially expressed in all coral species in response to SCTLD infection. We find that SCTLD infection induces increased expression of rab7, an established marker of in situ degradation of dysfunctional Symbiodiniaceae, in all coral species accompanied by genus-level shifts in Symbiodiniaceae photosystem and metabolism gene expression. Overall, our results indicate that SCTLD infection induces symbiophagy across coral species and that the severity of disease is influenced by Symbiodiniaceae identity.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/fisiologia , Recifes de Corais , Dinoflagellida/genética , Transcriptoma , Perfilação da Expressão Gênica , Simbiose/genética
5.
ISME Commun ; 3(1): 27, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37009785

RESUMO

Viruses can affect coral health by infecting their symbiotic dinoflagellate partners (Symbiodiniaceae). Yet, viral dynamics in coral colonies exposed to environmental stress have not been studied at the reef scale, particularly within individual viral lineages. We sequenced the viral major capsid protein (mcp) gene of positive-sense single-stranded RNA viruses known to infect symbiotic dinoflagellates ('dinoRNAVs') to analyze their dynamics in the reef-building coral, Porites lobata. We repeatedly sampled 54 colonies harboring Cladocopium C15 dinoflagellates, across three environmentally distinct reef zones (fringing reef, back reef, and forereef) around the island of Moorea, French Polynesia over a 3-year period and spanning a reef-wide thermal stress event. By the end of the sampling period, 28% (5/18) of corals in the fringing reef experienced partial mortality versus 78% (14/18) of corals in the forereef. Over 90% (50/54) of colonies had detectable dinoRNAV infections. Reef zone influenced the composition and richness of viral mcp amino acid types ('aminotypes'), with the fringing reef containing the highest aminotype richness. The reef-wide thermal stress event significantly increased aminotype dispersion, and this pattern was strongest in the colonies that experienced partial mortality. These findings demonstrate that dinoRNAV infections respond to environmental fluctuations experienced in situ on reefs. Further, viral productivity will likely increase as ocean temperatures continue to rise, potentially impacting the foundational symbiosis underpinning coral reef ecosystems.

6.
Sci Rep ; 13(1): 5813, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37037845

RESUMO

Half of the marine virosphere is hypothesized to be RNA viruses (kingdom Orthornavirae) that infect abundant micro-eukaryotic hosts (e.g. protists). To test this, quantitative approaches that broadly track infections in situ are needed. Here, we describe a technique-dsRNA-Immunofluorescence (dsRIF)-that uses a double-stranded RNA (dsRNA) targeting monoclonal antibody to assess host infection status based on the presence of dsRNA, a replicative intermediate of all Orthornavirae infections. We show that the dinoflagellate Heterocapsa circularisquama produces dsRIF signal ~ 1000 times above background autofluorescence when infected by the + ssRNA virus HcRNAV. dsRNA-positive virocells were detected across > 50% of the 48-h infection cycle and accumulated to represent at least 63% of the population. Photosynthetic and chromosomal integrity remained intact during peak replication, indicating HcRNAV infection does not interrupt these processes. This work validates the use of dsRIF on marine RNA viruses and their hosts, setting the stage for quantitative environmental applications that will accelerate understanding of virus-driven ecosystem impacts.


Assuntos
Dinoflagellida , Infecções por Vírus de RNA , Vírus de RNA , Vírus , Humanos , RNA Viral/genética , Ecossistema , Vírus de RNA/genética , Vírus/genética , Dinoflagellida/genética , RNA de Cadeia Dupla
7.
Appl Environ Microbiol ; 88(9): e0034722, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35435720

RESUMO

In July 2016, a severe coral reef invertebrate mortality event occurred approximately 200 km southeast of Galveston, Texas, at the East Flower Garden Bank, wherein ∼82% of corals in a 0.06-km2 area died. Based on surveys of dead corals and other invertebrates shortly after this mortality event, responders hypothesized that localized hypoxia was the most likely direct cause. However, no dissolved oxygen data were available to test this hypothesis, because oxygen is not continuously monitored within the Flower Garden Banks sanctuary. Here, we quantify microbial plankton community diversity based on four cruises over 2 years at the Flower Garden Banks, including a cruise just 5 to 8 days after the mortality event was first observed. In contrast with observations collected during nonmortality conditions, microbial plankton communities in the thermocline were differentially enriched with taxa known to be active and abundant in oxygen minimum zones or that have known adaptations to oxygen limitation shortly after the mortality event (e.g., SAR324, Thioglobaceae, Nitrosopelagicus, and Thermoplasmata MGII). Unexpectedly, these enrichments were not localized to the East Bank but were instead prevalent across the entire study area, suggesting there was a widespread depletion of dissolved oxygen concentrations in the thermocline around the time of the mortality event. Hydrographic analysis revealed the southern East Bank coral reef (where the localized mortality event occurred) was uniquely within the thermocline at this time. Our results demonstrate how temporal monitoring of microbial communities can be a useful tool to address questions related to past environmental events. IMPORTANCE In the northwestern Gulf of Mexico in July 2016, ∼82% of corals in a small area of the East Flower Garden Bank coral reef suddenly died without warning. Oxygen depletion is believed to have been the cause. However, there was considerable uncertainty, as no oxygen data were available from the time of the event. Microbes are sensitive to changes in oxygen and can be used as bioindicators of oxygen loss. In this study, we analyze microbial communities in water samples collected over several years at the Flower Garden Banks, including shortly after the mortality event. Our findings indicate that compared to normal conditions, oxygen depletion was widespread in the deep-water layer during the mortality event. Hydrographic analysis of water masses further revealed some of this low-oxygen water likely upwelled onto the coral reef.


Assuntos
Antozoários , Microbiota , Animais , Recifes de Corais , Hipóxia , Oxigênio , Água
8.
ISME J ; 16(5): 1430-1441, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35046559

RESUMO

Climate change-driven ocean warming is increasing the frequency and severity of bleaching events, in which corals appear whitened after losing their dinoflagellate endosymbionts (family Symbiodiniaceae). Viral infections of Symbiodiniaceae may contribute to some bleaching signs, but little empirical evidence exists to support this hypothesis. We present the first temporal analysis of a lineage of Symbiodiniaceae-infecting positive-sense single-stranded RNA viruses ("dinoRNAVs") in coral colonies, which were exposed to a 5-day heat treatment (+2.1 °C). A total of 124 dinoRNAV major capsid protein gene "aminotypes" (unique amino acid sequences) were detected from five colonies of two closely related Pocillopora-Cladocopium (coral-symbiont) combinations in the experiment; most dinoRNAV aminotypes were shared between the two coral-symbiont combinations (64%) and among multiple colonies (82%). Throughout the experiment, seventeen dinoRNAV aminotypes were found only in heat-treated fragments, and 22 aminotypes were detected at higher relative abundances in heat-treated fragments. DinoRNAVs in fragments of some colonies exhibited higher alpha diversity and dispersion under heat stress. Together, these findings provide the first empirical evidence that exposure to high temperatures triggers some dinoRNAVs to switch from a persistent to a productive infection mode within heat-stressed corals. Over extended time frames, we hypothesize that cumulative dinoRNAV production in the Pocillopora-Cladocopium system could affect colony symbiotic status, for example, by decreasing Symbiodiniaceae densities within corals. This study sets the stage for reef-scale investigations of dinoRNAV dynamics during bleaching events.


Assuntos
Antozoários , Dinoflagellida , Viroses , Animais , Recifes de Corais , Dinoflagellida/genética , Simbiose
9.
ISME Commun ; 2(1): 46, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37938315

RESUMO

Stony coral tissue loss disease (SCTLD) is a widespread and deadly disease that affects nearly half of Caribbean coral species. To understand the microbial community response to this disease, we performed a disease transmission experiment on US Virgin Island (USVI) corals, exposing six species of coral with varying susceptibility to SCTLD. The microbial community of the surface mucus and tissue layers were examined separately using a small subunit ribosomal RNA gene-based sequencing approach, and data were analyzed to identify microbial community shifts following disease acquisition, potential causative pathogens, as well as compare microbiota composition to field-based corals from the USVI and Florida outbreaks. While all species displayed similar microbiome composition with disease acquisition, microbiome similarity patterns differed by both species and mucus or tissue microhabitat. Further, disease exposed but not lesioned corals harbored a mucus microbial community similar to those showing disease signs, suggesting that mucus may serve as an early warning detection for the onset of SCTLD. Like other SCTLD studies in Florida, Rhodobacteraceae, Arcobacteraceae, Desulfovibrionaceae, Peptostreptococcaceae, Fusibacter, Marinifilaceae, and Vibrionaceae dominated diseased corals. This study demonstrates the differential response of the mucus and tissue microorganisms to SCTLD and suggests that mucus microorganisms may be diagnostic for early disease exposure.

10.
Nat Rev Microbiol ; 19(8): 501-513, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33762712

RESUMO

Viruses that infect microbial hosts have traditionally been studied in laboratory settings with a focus on either obligate lysis or persistent lysogeny. In the environment, these infection archetypes are part of a continuum that spans antagonistic to beneficial modes. In this Review, we advance a framework to accommodate the context-dependent nature of virus-microorganism interactions in ecological communities by synthesizing knowledge from decades of virology research, eco-evolutionary theory and recent technological advances. We discuss that nuanced outcomes, rather than the extremes of the continuum, are particularly likely in natural communities given variability in abiotic factors, the availability of suboptimal hosts and the relevance of multitrophic partnerships. We revisit the 'rules of life' in terms of how long-term infections shape the fate of viruses and microbial cells, populations and ecosystems.


Assuntos
Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/genética , Evolução Biológica , Genes Virais , Interações Hospedeiro-Patógeno/genética
11.
Anim Microbiome ; 3(1): 25, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33752761

RESUMO

BACKGROUND: The microbiomes of foundation (habitat-forming) species such as corals and sponges underpin the biodiversity, productivity, and stability of ecosystems. Consumers shape communities of foundation species through trophic interactions, but the role of consumers in dispersing the microbiomes of such species is rarely examined. For example, stony corals rely on a nutritional symbiosis with single-celled endosymbiotic dinoflagellates (family Symbiodiniaceae) to construct reefs. Most corals acquire Symbiodiniaceae from the environment, but the processes that make Symbiodiniaceae available for uptake are not resolved. Here, we provide the first comprehensive, reef-scale demonstration that predation by diverse coral-eating (corallivorous) fish species promotes the dispersal of Symbiodiniaceae, based on symbiont cell densities and community compositions from the feces of four obligate corallivores, three facultative corallivores, two grazer/detritivores as well as samples of reef sediment and water. RESULTS: Obligate corallivore feces are environmental hotspots of Symbiodiniaceae cells: live symbiont cell concentrations in such feces are 5-7 orders of magnitude higher than sediment and water environmental reservoirs. Symbiodiniaceae community compositions in the feces of obligate corallivores are similar to those in two locally abundant coral genera (Pocillopora and Porites), but differ from Symbiodiniaceae communities in the feces of facultative corallivores and grazer/detritivores as well as sediment and water. Combining our data on live Symbiodiniaceae cell densities in feces with in situ observations of fish, we estimate that some obligate corallivorous fish species release over 100 million Symbiodiniaceae cells per 100 m2 of reef per day. Released corallivore feces came in direct contact with coral colonies in the fore reef zone following 91% of observed egestion events, providing a potential mechanism for the transfer of live Symbiodiniaceae cells among coral colonies. CONCLUSIONS: Taken together, our findings show that fish predation on corals may support the maintenance of coral cover on reefs in an unexpected way: through the dispersal of beneficial coral symbionts in corallivore feces. Few studies examine the processes that make symbionts available to foundation species, or how environmental reservoirs of such symbionts are replenished. This work sets the stage for parallel studies of consumer-mediated microbiome dispersal and assembly in other sessile, habitat-forming species.

12.
Sci Rep ; 10(1): 6729, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317664

RESUMO

Accurate, rapid, and comprehensive biodiversity assessments are critical for investigating ecological processes and supporting conservation efforts. Environmental DNA (eDNA) surveys show promise as a way to effectively characterize fine-scale patterns of community composition. We tested whether a single PCR survey of eDNA in seawater using a broad metazoan primer could identify differences in community composition between five adjacent habitats at 19 sites across a tropical Caribbean bay in Panama. We paired this effort with visual fish surveys to compare methods for a conspicuous taxonomic group. eDNA revealed a tremendous diversity of animals (8,586 operational taxonomic units), including many small taxa that would be undetected in traditional in situ surveys. Fish comprised only 0.07% of the taxa detected by a broad COI primer, yet included 43 species not observed in the visual survey. eDNA revealed significant differences in fish and invertebrate community composition across adjacent habitats and areas of the bay driven in part by taxa known to be habitat-specialists or tolerant to wave action. Our results demonstrate the ability of broad eDNA surveys to identify biodiversity patterns in the ocean.


Assuntos
Biodiversidade , DNA Ambiental/genética , Peixes/genética , Invertebrados/genética , Oceanos e Mares , Clima Tropical , Análise de Variância , Animais , Geografia , Filogenia , Análise de Componente Principal , Inquéritos e Questionários
13.
Glob Chang Biol ; 26(4): 2220-2234, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32048447

RESUMO

Coral reefs are declining globally as climate change and local water quality press environmental conditions beyond the physiological tolerances of holobionts-the collective of the host and its microbial symbionts. To assess the relationship between symbiont composition and holobiont stress tolerance, community diversity metrics were quantified for dinoflagellate endosymbionts (Family: Symbiodiniaceae) from eight Acropora millepora genets that thrived under or responded poorly to various stressors. These eight selected genets represent the upper and lower tails of the response distribution of 40 coral genets that were exposed to four stress treatments (and control conditions) in a 10-day experiment. Specifically, four 'best performer' coral genets were analyzed at the end of the experiment because they survived high temperature, high pCO2 , bacterial exposure, or combined stressors, whereas four 'worst performer' genets were characterized because they experienced substantial mortality under these stressors. At the end of the experiment, seven of eight coral genets mainly hosted Cladocopium symbionts, whereas the eighth genet was dominated by both Cladocopium and Durusdinium symbionts. Symbiodiniaceae alpha and beta diversity were higher in worst performing genets than in best performing genets. Symbiont communities in worst performers also differed more after stress exposure relative to their controls (based on normalized proportional differences in beta diversity), than did best performers. A generalized joint attribute model estimated the influence of host genet and treatment on Symbiodiniaceae community composition and identified strong associations among particular symbionts and host genet performance, as well as weaker associations with treatment. Although dominant symbiont physiology and function contribute to host performance, these findings emphasize the importance of symbiont community diversity and stochasticity as components of host performance. Our findings also suggest that symbiont community diversity metrics may function as indicators of resilience and have potential applications in diverse disciplines from climate change adaptation to agriculture and medicine.

14.
PLoS One ; 13(6): e0199462, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29924857

RESUMO

Bioerosion, the removal of calcium carbonate from coral frameworks by living organisms, influences a variety of reef features, from their topographic complexity to the net balance of carbonate budgets. Little is known, however, about how macroborers, which bore into reef substrates leaving traces greater than 0.1 mm diameter, are distributed across coral reefs, particularly reef systems with high (>50%) stony coral cover or at mesophotic depths (≥30 m). Here, we present an accurate and efficient method for quantifying macroborer densities from stony coral hosts via image analysis, using the bioeroding barnacle, Lithotrya dorsalis, and its host coral, Orbicella franksi, as a case study. We found that in 2014, L. dorsalis densities varied consistently with depth and host percent cover in two Atlantic reef systems: the Flower Garden Banks (FGB, northwest Gulf of Mexico) and the U.S. Virgin Islands (USVI). Although average barnacle density was nearly 4.5 times greater overall in the FGB than in the USVI, barnacle density decreased with depth in both reef regions. Barnacle density also scaled negatively with increasing coral cover in the study areas, suggesting that barnacle populations are not strictly space-limited in their distribution and settlement opportunities. Our findings suggest that depth and host coral cover, and potentially, local factors may strongly influence the abundance of macroborers, and thus the rate of CaCO3 loss, in a given reef system. Our image analysis method for quantifying macroborers can be standardized across historical and modern reef records to better understand how borers impact host growth and reef health.


Assuntos
Antozoários/fisiologia , Recifes de Corais , Thoracica/fisiologia , Animais , Geografia , Golfo do México , Processamento de Imagem Assistida por Computador , Análise de Regressão
15.
Nat Rev Microbiol ; 15(4): 205-216, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28090075

RESUMO

Coral reefs occur in nutrient-poor shallow waters, constitute biodiversity and productivity hotspots, and are threatened by anthropogenic disturbance. This Review provides an introduction to coral reef virology and emphasizes the links between viruses, coral mortality and reef ecosystem decline. We describe the distinctive benthic-associated and water-column- associated viromes that are unique to coral reefs, which have received less attention than viruses in open-ocean systems. We hypothesize that viruses of bacteria and eukaryotes dynamically interact with their hosts in the water column and with scleractinian (stony) corals to influence microbial community dynamics, coral bleaching and disease, and reef biogeochemical cycling. Last, we outline how marine viruses are an integral part of the reef system and suggest that the influence of viruses on reef function is an essential component of these globally important environments.


Assuntos
Antozoários/virologia , Recifes de Corais , Microbiota , Água do Mar/química , Água do Mar/virologia , Vírus/classificação , Animais , DNA Viral/genética , Ecossistema , Genoma Viral/genética , RNA Viral/genética , Simbiose , Vírus/genética , Vírus/isolamento & purificação
16.
Nat Commun ; 7: 11833, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27270557

RESUMO

Losses of corals worldwide emphasize the need to understand what drives reef decline. Stressors such as overfishing and nutrient pollution may reduce resilience of coral reefs by increasing coral-algal competition and reducing coral recruitment, growth and survivorship. Such effects may themselves develop via several mechanisms, including disruption of coral microbiomes. Here we report the results of a 3-year field experiment simulating overfishing and nutrient pollution. These stressors increase turf and macroalgal cover, destabilizing microbiomes, elevating putative pathogen loads, increasing disease more than twofold and increasing mortality up to eightfold. Above-average temperatures exacerbate these effects, further disrupting microbiomes of unhealthy corals and concentrating 80% of mortality in the warmest seasons. Surprisingly, nutrients also increase bacterial opportunism and mortality in corals bitten by parrotfish, turning normal trophic interactions deadly for corals. Thus, overfishing and nutrient pollution impact reefs down to microbial scales, killing corals by sensitizing them to predation, above-average temperatures and bacterial opportunism.


Assuntos
Recifes de Corais , Poluição Ambiental , Pesqueiros , Microbiota , Temperatura , Animais , Antozoários/crescimento & desenvolvimento , Antozoários/microbiologia , Biodiversidade , Eutrofização , Herbivoria/fisiologia , Comportamento Predatório , Estações do Ano
17.
Front Microbiol ; 7: 127, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26941712

RESUMO

Previous studies of coral viruses have employed either microscopy or metagenomics, but few have attempted to comprehensively link the presence of a virus-like particle (VLP) to a genomic sequence. We conducted transmission electron microscopy imaging and virome analysis in tandem to characterize the most conspicuous viral types found within the dominant Pacific reef-building coral genus Acropora. Collections for this study inadvertently captured what we interpret as a natural outbreak of viral infection driven by aerial exposure of the reef flat coincident with heavy rainfall and concomitant mass bleaching. All experimental corals in this study had high titers of viral particles. Three of the dominant VLPs identified were observed in all tissue layers and budding out from the epidermis, including viruses that were ∼70, ∼120, and ∼150 nm in diameter; these VLPs all contained electron dense cores. These morphological traits are reminiscent of retroviruses, herpesviruses, and nucleocytoplasmic large DNA viruses (NCLDVs), respectively. Some 300-500 nm megavirus-like VLPs also were observed within and associated with dinoflagellate algal endosymbiont (Symbiodinium) cells. Abundant sequence similarities to a gammaretrovirus, herpesviruses, and members of the NCLDVs, based on a virome generated from five Acropora aspera colonies, corroborated these morphology-based identifications. Additionally sequence similarities to two diagnostic genes, a MutS and (based on re-annotation of sequences from another study) a DNA polymerase B gene, most closely resembled Pyramimonas orientalis virus, demonstrating the association of a cosmopolitan megavirus with Symbiodinium. We also identified several other virus-like particles in host tissues, along with sequences phylogenetically similar to circoviruses, phages, and filamentous viruses. This study suggests that viral outbreaks may be a common but previously undocumented component of natural bleaching events, particularly following repeated episodes of multiple environmental stressors.

18.
Environ Microbiol ; 17(10): 3708-21, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25640518

RESUMO

Methane seep microbial communities perform a key ecosystem service by consuming the greenhouse gas methane prior to its release into the hydrosphere, minimizing the impact of marine methane sources on our climate. Although previous studies have examined the ecology and biochemistry of these communities, none has examined viral assemblages associated with these habitats. We employed virus particle purification, genome amplification, pyrosequencing and gene/genome reconstruction and annotation on two metagenomic libraries, one prepared for ssDNA and the other for all DNA, to identify the viral community in a methane seep. Similarity analysis of these libraries (raw and assembled) revealed a community dominated by phages, with a significant proportion of similarities to the Microviridae family of ssDNA phages. We define these viruses as the Eel River Basin Microviridae (ERBM). Assembly and comparison of 21 ERBM closed circular genomes identified five as members of a novel sister clade to the Microvirus genus of Enterobacteria phages. Comparisons among other metagenomes and these Microviridae major-capsid sequences indicated that this clade of phages is currently unique to the Eel River Basin sediments. Given this ERBM clade's relationship to the Microviridae genus Microvirus, we define this sister clade as the candidate genus Pequeñovirus.


Assuntos
Enterobacteriaceae/virologia , Sedimentos Geológicos/virologia , Microviridae/classificação , Microviridae/isolamento & purificação , Sequência de Bases , DNA Viral/genética , Ecossistema , Sedimentos Geológicos/microbiologia , Metagenoma , Metagenômica , Metano/metabolismo , Microviridae/genética , Análise de Sequência de DNA
19.
ISME J ; 8(2): 271-83, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23949663

RESUMO

White plague (WP)-like diseases of tropical corals are implicated in reef decline worldwide, although their etiological cause is generally unknown. Studies thus far have focused on bacterial or eukaryotic pathogens as the source of these diseases; no studies have examined the role of viruses. Using a combination of transmission electron microscopy (TEM) and 454 pyrosequencing, we compared 24 viral metagenomes generated from Montastraea annularis corals showing signs of WP-like disease and/or bleaching, control conspecific corals, and adjacent seawater. TEM was used for visual inspection of diseased coral tissue. No bacteria were visually identified within diseased coral tissues, but viral particles and sequence similarities to eukaryotic circular Rep-encoding single-stranded DNA viruses and their associated satellites (SCSDVs) were abundant in WP diseased tissues. In contrast, sequence similarities to SCSDVs were not found in any healthy coral tissues, suggesting SCSDVs might have a role in WP disease. Furthermore, Herpesviridae gene signatures dominated healthy tissues, corroborating reports that herpes-like viruses infect all corals. Nucleocytoplasmic large DNA virus (NCLDV) sequences, similar to those recently identified in cultures of Symbiodinium (the algal symbionts of corals), were most common in bleached corals. This finding further implicates that these NCLDV viruses may have a role in bleaching, as suggested in previous studies. This study determined that a specific group of viruses is associated with diseased Caribbean corals and highlights the potential for viral disease in regional coral reef decline.


Assuntos
Antozoários/virologia , Recifes de Corais , Vírus de DNA/fisiologia , Animais , Antozoários/microbiologia , Antozoários/ultraestrutura , Biodiversidade , Região do Caribe , Vírus de DNA/classificação , Vírus de DNA/genética , Vírus de DNA/ultraestrutura , DNA Satélite/genética , DNA de Cadeia Simples/genética , Genoma Viral/genética , Espaço Intracelular/virologia , Microscopia Eletrônica de Transmissão , Água do Mar/virologia
20.
PLoS One ; 8(2): e57164, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437335

RESUMO

In September of 2010, Brewer's Bay reef, located in St. Thomas (U.S. Virgin Islands), was simultaneously affected by abnormally high temperatures and the passage of a hurricane that resulted in the mass bleaching and fragmentation of its coral community. An outbreak of a rapid tissue loss disease among coral colonies was associated with these two disturbances. Gross lesion signs and lesion progression rates indicated that the disease was most similar to the Caribbean coral disease white plague type 1. Experiments indicated that the disease was transmissible through direct contact between colonies, and five-meter radial transects showed a clustered spatial distribution of disease, with diseased colonies being concentrated within the first meter of other diseased colonies. Disease prevalence and the extent to which colonies were bleached were both significantly higher on unattached colony fragments than on attached colonies, and disease occurred primarily on fragments found in direct contact with sediment. In contrast to other recent studies, disease presence was not related to the extent of bleaching on colonies. The results of this study suggest that colony fragmentation and contact with sediment played primary roles in the initial appearance of disease, but that the disease was capable of spreading among colonies, which suggests secondary transmission is possible through some other, unidentified mechanism.


Assuntos
Antozoários/microbiologia , Recifes de Corais , Animais , Análise por Conglomerados , Tempestades Ciclônicas , Monitoramento Ambiental , Sedimentos Geológicos/microbiologia , Temperatura Alta , Ilhas Virgens Americanas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA