Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 17(13): 12358-12373, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37358244

RESUMO

Herein, we have developed nanohybrids (nHs) to remotely activate a therapeutic enzyme for its use in Directed Enzyme Prodrug Therapy (DEPT). The coencapsulation of magnetic nanoparticles (MNPs) with horseradish peroxidase (HRP) using biomimetic silica as an entrapment matrix was optimized to obtain nanosized hybrids (∼150 nm) for remote activation of the therapeutic enzyme. HRP converts indole-3-acetic acid (3IAA) into peroxylated radicals, whereas MNPs respond to alternating magnetic fields (AMFs) becoming local hotspots. The AMF application triggered an increase in the bioconversion rate of HRP matching the activity displayed at the optimal temperature of the nHs (Topt = 50 °C) without altering the temperature of the reaction media. This showed that enzyme nanoactuation is possible with MNPs even if they are not covalently bound. After an extensive physicochemical/magnetic characterization, the spatial location of each component of the nH was deciphered, and an insulating role of the silica matrix was suggested as critical for introducing remote control over HRP. In vitro assays, using a human pancreatic cancer cell line (MIA PaCa-2), showed that only upon exposure to AMF and in the presence of the prodrug, the enzyme-loaded nHs triggered cell death. Moreover, in vivo experiments showed higher reductions in the tumor volume growth in those animals treated with nHs in the presence of 3IAA when exposed to AMF. Thus, this work demonstrates the feasibility of developing a spatiotemporally controlled DEPT strategy to overcome unwanted off-target effects.


Assuntos
Nanopartículas , Neoplasias , Pró-Fármacos , Animais , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Calefação , Dióxido de Silício , Fenômenos Magnéticos , Campos Magnéticos , Neoplasias/tratamento farmacológico
2.
Methods Mol Biol ; 2100: 259-270, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31939129

RESUMO

In this chapter we describe different strategies for enzyme immobilization in biomimetic silica nanoparticles. Synthesis of this type of support is performed under mild and biocompatible conditions and has been proven suitable for the immobilization and stabilization of a range of enzymes and enzymatic systems in nanostructured particles. Immobilization occurs by entrapment while the silica matrix is formed via catalysis of a polyamine molecule and the presence of silicic acid. Parameters such as enzyme, polyamine molecule, or source of Si concentration have been tailored in order to maximize enzymatic loads, stabilities, and specific activities of the catalysts. We provide different approaches for the immobilization and co-immobilization of enzymes that could be potentially extensible to other biocatalysts.


Assuntos
Biomimética , Enzimas Imobilizadas/química , Dióxido de Silício/química , Biomimética/métodos , Catálise , Reagentes de Ligações Cruzadas/química , Estabilidade Enzimática , Fungos/enzimologia , Cinética , Nanopartículas/química , Nanopartículas/ultraestrutura , Oxirredução , Termodinâmica
3.
PLoS One ; 14(4): e0214004, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30933987

RESUMO

Hybrid and composite nanoparticles represent an attractive material for enzyme integration due to possible synergic advantages of the structural builders in the properties of the nanobiocatalyst. In this study, we report the synthesis of a new stable hybrid nanobiocatalyst formed by biomimetic silica (Si) nanoparticles entrapping both Horseradish Peroxidase (HRP) (EC 1.11.1.7) and magnetic nanoparticles (MNPs). We have demonstrated that tailoring of the synthetic reagents and post immobilization treatments greatly impacted physical and biocatalytic properties such as an unprecedented ~280 times increase in the half-life time in thermal stability experiments. The optimized nanohybrid biocatalyst that showed superparamagnetic behaviour, was effective in the batch conversion of indole-3-acetic acid, a prodrug used in Direct Enzyme Prodrug Therapy (DEPT). Our system, that was not cytotoxic per se, showed enhanced cytotoxic activity in the presence of the prodrug towards HCT-116, a colorectal cancer cell line. The strategy developed proved to be effective in obtaining a stabilized nanobiocatalyst combining three different organic/inorganic materials with potential in DEPT and other biotechnological applications.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Enzimas Imobilizadas/química , Peroxidase do Rábano Silvestre/química , Nanocompostos/química , Antineoplásicos/administração & dosagem , Antineoplásicos/metabolismo , Biocatálise , Avaliação Pré-Clínica de Medicamentos , Enzimas Imobilizadas/metabolismo , Células HCT116 , Meia-Vida , Peroxidase do Rábano Silvestre/metabolismo , Humanos , Ácidos Indolacéticos/administração & dosagem , Ácidos Indolacéticos/metabolismo , Nanopartículas de Magnetita/química , Pró-Fármacos/administração & dosagem , Pró-Fármacos/metabolismo , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA