Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Front Plant Sci ; 15: 1323390, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38439988

RESUMO

The CRISPR/Cas9 ribonucleoprotein (RNP)-mediated technology represents a fascinating tool for modifying gene expression or mutagenesis as this system allows for obtaining transgene-free plants, avoiding exogenous DNA integration. Holm oak (Quercus ilex) has an important social, economic, and ecological role in the Mediterranean climate zones of Western Europe and North Africa and is severely affected by oak decline syndrome. Here we report the first example of the application of the CRISPR/Cas9-RNP technology in holm oak. Firstly, we evaluated the protoplast isolation from both in vitro leaves and proembryogenic masses. Proembryogenic masses represented the best material to get high protoplast yield (11 x 106 protoplasts/ml) and viability. Secondly, the protoplast transfection ability was evaluated through a vector expressing green fluorescence protein as marker gene of transfection, reaching a transfection percentage of 62% after 24 hours. CRISPR/Cas9 RNPs were successfully delivered into protoplasts resulting in 5.6% ± 0.5% editing efficiency at phytoene desaturase (pds) target genomic region. Protoplasts were then cultured in semisolid media and, after 45 days in culture, developed embryogenic calli were observed in a Murashige and Skoog media with half concentration of NH4NO3 and KNO3 supplemented with 0.1 mg/L benzylaminopurine and 0.1 mg/L 2,4-dichlorophenoxyacetic acid.

2.
Front Plant Sci ; 14: 1337152, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38298606

RESUMO

Cryopreservation, or the storage at liquid nitrogen temperatures (-196°C), of embryogenic cells or somatic embryos allows their long-term conservation without loss of their embryogenic capacity. During the last decade, protocols for cryopreservation of embryogenic material of woody species have been increasing in number and importance. However, despite the large experimental evidence proved in thousands of embryogenic lines, the application for the large-scale conservation of embryogenic material in cryobanks is still limited. Cryopreservation facilitates the management of embryogenic lines, reducing costs and time spent on their maintenance, thus limiting the risk of the appearance of somaclonal variation or contamination. Somatic embryogenesis in combination with cryopreservation is especially useful to preserve the juvenility of lines while the corresponding clones are being field-tested. Hence, when tree performance has been evaluated, selected varieties can be propagated from the cryostock. The traditional method of slow cooling or techniques based on vitrification are mostly applied procedures. For example, slow cooling methods are widely applied to conserve embryogenic lines of conifers. Desiccation based procedures, although simpler, have been applied in a smaller number of species. Genetic stability of the cryopreserved material is supported by multiloci PCR-derived markers in most of the assayed species, whereas DNA methylation status assays showed that cryopreservation might induce some changes that were also observed after prolonged subculture of the embryogenic lines. This article reviews the cryopreservation of embryogenic cultures in conifers, fruit species, deciduous forest species and palms, including a description of the different cryopreservation procedures and the analysis of their genetic stability after storage in liquid nitrogen.

3.
Plants (Basel) ; 11(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36501347

RESUMO

Castanea sativa cv. 'Garrone Rosso' and 'Marrone di Castel del Rio' are two of the most prized varieties in Italy due to their valuable and healthy nuts used for fresh consumption and in the confectionery industry. Despite the growing demand for chestnuts, there are constraints regarding plant propagation that hamper the renewal and new planting of orchards in different areas. Castanea sativa is susceptible to diseases that have caused a reduction in its area of production. For this reason, in vitro culture represents a valuable technique for germplasm preservation and plant multiplication enabling production of a high number of plants for use in breeding programs. Here we present an in vitro micropropagation protocol for Italian Castanea sativa cv. 'Marrone di Castel del Rio' and cv. 'Garrone Rosso' to contribute to the preservation and enhancement of the Italian germplasm. Nodal explants were used as the starting material for in vitro establishment. The cv. 'Marrone di Castel del Rio' showed a high percentage of survival explants (92%) when subjected to long bleach exposure (25 min), in contrast to what was observed for the 'Garrone Rosso' cultivar. Ascorbic acid was found to be the best compound to counteract phenol exudation. The MS3B and DKW media supplied with 0.5 mg/L BAP were effective for in vitro establishment, while the DKW medium (0.1 mg/L BAP and 0.05 mg/L IBA) was preferable for the proliferation phase. A double-layer rooting methodology was used and 35% rooting was observed with 25 mg/L IBA rooting treatment.

4.
Plants (Basel) ; 11(9)2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35567267

RESUMO

Holm oak populations are severely affected by oak decline syndrome, and reliable methods of conserving the plant material are required. A vitrification-based cryopreservation method was used for the first time for the long-term conservation of holm oak embryogenic cultures. Successful cryopreservation was achieved after determining the best developmental stage of the somatic embryos used and the optimal incubation period in plant vitrification solution 2 (PVS2). Embryos were recovered from individual nodular embryogenic structures (NES) derived from four embryogenic lines after preculture on a medium containing 0.3 M sucrose, incubation in PVS2 vitrification solution for 15 min at 25 °C and direct immersion in liquid nitrogen (LN). Embryo recovery rates of 16.7-63.3% were obtained after cryostorage for four years in LN. In addition to the embryo developmental stage and the PVS2 treatment time, the genotype can also significantly affect embryo recovery after LN storage. There were no significant differences in plant regeneration or polyploid stability between somatic embryos and plants derived from control embryos (not cryopreserved) and cryopreserved embryos. The findings indicate that embryo proliferation, plant conversion and polyploid stability are maintained in material recovered from the vitrification solution and subsequently cryopreserved.

5.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628572

RESUMO

Castanea sativa is an important tree nut species worldwide, highly appreciated for its multifunctional role, in particular for timber and nut production. Nowadays, new strategies are needed to achieve plant resilience to diseases, climate change, higher yields, and nutritional quality. Among the new plant breeding techniques (NPBTs), the CRISPR/Cas9 system represents a powerful tool to improve plant breeding in a short time and inexpensive way. In addition, the CRISPR/Cas9 construct can be delivered into the cells in the form of ribonucleoproteins (RNPs), avoiding the integration of exogenous DNA (GMO-free) through protoplast technology that represents an interesting material for gene editing thanks to the highly permeable membrane to DNA. In the present study, we developed the first protoplast isolation protocol starting from European chestnut somatic embryos. The enzyme solution optimized for cell wall digestion contained 1% cellulase Onozuka R-10 and 0.5% macerozyme R-10. After incubation for 4 h at 25 °C in dark conditions, a yield of 4,500,000 protoplasts/mL was obtained (91% viable). The transfection capacity was evaluated using the GFP marker gene, and the percentage of transfected protoplasts was 51%, 72 h after the transfection event. The direct delivery of the purified RNP was then performed targeting the phytoene desaturase gene. Results revealed the expected target modification by the CRISPR/Cas9 RNP and the efficient protoplast editing.


Assuntos
Edição de Genes , Ribonucleoproteínas , Sistemas CRISPR-Cas/genética , DNA , Edição de Genes/métodos , Melhoramento Vegetal , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
6.
Front Plant Sci ; 13: 824781, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356118

RESUMO

The dieback syndrome affecting Quercus ilex and other oak species impels the search for tolerant plant genotypes, as well as methods of plant immunization against such infections. Elicitation treatments can be an effective strategy to activate plant defense response and embryogenic lines represent a promising tool to generate new tolerant genotypes and also to study early markers involved in defense response. The aim of the presented work was to investigate changes in gene expression, and in hormonal and phenolic profiles induced in three holm oak embryogenic lines (ELs) elicited with methyl jasmonate (MeJA) before and after infection with the oomycete Phytophthora cinnamomi, which is the main biotic agent involved in this pathogenic process. The three ELs, derived from three genotypes, showed different basal profiles in all tested parameters, noting that the VA5 naïve genotype from a scape tree was characterized by a basal higher expression in NADPH-dependent cinnamyl alcohol dehydrogenase (CAD) and chalcone synthase (CHS) genes and also by higher caffeic acid content. Our work also identifies changes triggered by MeJA elicitation in holm oak embryogenic lines, such as increases in ABA and JA contents, as well as in levels of most of the determined phenolic compounds, especially in caffeic acid in Q8 and E00 ELs, but not in their biosynthesis genes. Irrespective of the EL, the response to oomycete infection in holm oak elicited plant material was characterized by a further increase in JA. Since JA and phenols have been described as a part of the Q. ilex defense response against P. cinnamomi, we propose that MeJA may act as an induced resistance (IR) stimulus and that in our embryogenic material induced both direct (detected prior to any challenge) and primed (detected after subsequent challenge) defense responses.

7.
Plants (Basel) ; 11(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35161285

RESUMO

Holm oak is a key tree species in Mediterranean ecosystems, whose populations have been increasingly threatened by oak decline syndrome, a disease caused by the combined action of Phytophthora cinnamomi and abiotic stresses. The aim of the present study was to produce holm oak plants that overexpress the Ginkbilobin-2 homologous domain gene (Cast_Gnk2-like) that it is known to possess antifungal properties. Proembryogenic masses (PEMs) isolated from four embryogenic lines (Q8, E2, Q10-16 and E00) were used as target explants. PEMs were co-cultured for 5 days with Agrobacterium EHA105pGnk2 and then cultured on selective medium containing kanamycin (kan) and carbenicillin. After 14 weeks on selective medium, the transformation events were observed in somatic embryos of lines Q8 and E2 and a total of 4 transgenic lines were achieved. The presence of the Cast_Gnk2-like gene on transgenic embryos was verified by PCR, and the number of transgene copies and gene expression was estimated by qPCR. Transgenic plants were obtained from all transgenic lines after cold storage of the somatic embryos for 2 months and subsequent transfer to germination medium. In an in vitro tolerance assay with the pathogen P. cinnamomi, we observed that transgenic plants were able to survive longer than wild type.

8.
Front Plant Sci ; 12: 728516, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512704

RESUMO

CRISPR/Cas9 has emerged as the most important tool for genome engineering due to its simplicity, design flexibility, and high efficiency. This technology makes it possible to induce point mutations in one or some target sequences simultaneously, as well as to introduce new genetic variants by homology-directed recombination. However, this approach remains largely unexplored in forest species. In this study, we reported the first example of CRISPR/Cas9-mediated gene editing in Castanea genus. As a proof of concept, we targeted the gene encoding phytoene desaturase (pds), whose mutation disrupts chlorophyll biosynthesis allowing for the visual assessment of knockout efficiency. Globular and early torpedo-stage somatic embryos of Castanea sativa (European chestnut) were cocultured for 5 days with a CRISPR/Cas9 construct targeting two conserved gene regions of pds and subsequently cultured on a selection medium with kanamycin. After 8 weeks of subculture on selection medium, four kanamycin-resistant embryogenetic lines were isolated. Genotyping of these lines through target Sanger sequencing of amplicons revealed successful gene editing. Cotyledonary somatic embryos were maturated on maltose 3% and cold-stored at 4°C for 2 months. Subsequently, embryos were subjected to the germination process to produce albino plants. This study opens the way to the use of the CRISPR/Cas9 system in European chestnut for biotechnological applications.

9.
Int J Mol Sci ; 22(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578757

RESUMO

We present a reproducible procedure for transforming somatic embryos of cork oak with the CsTL1 gene that codes for a thaumatin-like protein, in order to confer tolerance to Phytophthora cinnamomi. Different concentrations/combinations of the antibiotics carbenicillin and cefotaxime, as bacteriostatic agents, and kanamycin, as a selective agent, were tested. A lethal dose of 125 mg/L kanamycin was employed to select transgenic somatic embryos, and carbenicillin was used as a bacteriostatic agent at a concentration of 300 mg/L, which does not inhibit somatic embryo proliferation. The transformation efficiency was clearly genotype-dependent and was higher for the TGR3 genotype (17%) than for ALM80 (4.5%) and ALM6 (2%). Insertion of the transgenes in genomic DNA was confirmed by PCR analysis, whereas expression of the CsTL1 gene was evaluated by semi-quantitative real-time PCR (qPCR) analysis. A vitrification treatment successfully cryopreserved the transgenic lines generated. The antifungal activity of the thaumatin-like protein expressed by the gene CsTL1 was evaluated in an in vitro bioassay with the oomycete P. cinnamomi. Of the eight transgenic lines analyzed, seven survived for between one or two times longer than non-transgenic plantlets. Expression of the CsTL1 gene and plantlet survival days were correlated, and survival was generally greater in plantlets that strongly expressed the CsTL1 gene.


Assuntos
Doenças das Plantas/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/embriologia , Quercus/embriologia , Agrobacterium tumefaciens/genética , Resistência à Doença , Phytophthora/fisiologia , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/parasitologia , Quercus/genética , Quercus/parasitologia , Transformação Genética , Transgenes
10.
Front Plant Sci ; 10: 239, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30967881

RESUMO

Quercus ilex (holm oak) is one of the most representative trees in the Mediterranean basin, but now the sustainability of its ecosystems is at serious risk due to the lack of natural regeneration and to the presence of a severe disease called oak decline that has caused the death of thousands of trees. The application of biotechnological tools, such as somatic embryogenesis, allows programs of genetic improvement of the species to be speeded up and helps in the conservation of its ecosystems. Somatic embryogenesis is currently considered one of the main biotechnological techniques that has demonstrated significant benefits when has applied to forest tree species, providing significant advantages such as mass propagation, genetic transformation, application of synthetic seed, and cryopreservation of elite genotypes. In this report, the state of the art of somatic embryogenesis in holm oak is reviewed. Factors affecting the induction (plant donor age, type of explant, or plant growth regulators) and maintenance and proliferation of the embryogenic cultures are summarized. Advances on the conversion of somatic embryos into plants and on the acclimatization of these plantlets, as well as the results obtained on the application of the genetic transformation and the cryopreservation procedures to holm oak embryogenic cultures, are also presented.

11.
J Plant Physiol ; 213: 42-54, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28315794

RESUMO

Somatic embryogenesis is considered a convenient tool for investigating the regulating mechanisms of embryo formation; it is also a feasible system for in vitro regeneration procedures, with many advantages in woody species. Nevertheless, trees have shown recalcitrance to somatic embryogenesis, and its efficiency remains very low in many cases. Consequently, despite the clear potential of somatic embryogenesis in tree breeding programs, its application is limited since factors responsible for embryogenesis initiation have not yet been completely elucidated. In the present work, we investigated key cellular factors involved in the change of developmental program during leaf somatic embryogenesis initiation of white oak (Quercus alba), aiming to identify early markers of the process. The results revealed that pectin esterification, auxin accumulation and DNA demethylation were induced during embryogenesis initiation and differentially found in embryogenic cells, while they were not present in leaf cells before induction or in non-embryogenic cells after embryogenesis initiation. These three factors constitute early markers of leaf embryogenesis and represent processes that could be interconnected and involved in the regulation of cell reprogramming and embryogenesis initiation. These findings provide new insights into the mechanisms underlying plant cell reprogramming, totipotency and embryogenic competence acquisition, especially in tree species for which information is scarce, thus opening up the possibility of efficient manipulation of somatic embryogenesis induction.


Assuntos
Ácidos Indolacéticos/metabolismo , Pectinas/metabolismo , Folhas de Planta/embriologia , Folhas de Planta/metabolismo , Quercus/embriologia , Quercus/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Metilação de DNA/genética , Metilação de DNA/fisiologia , Desmetilação , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Técnicas de Embriogênese Somática de Plantas , Quercus/genética
12.
Methods Mol Biol ; 1224: 163-76, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25416257

RESUMO

Development of a system for direct transfer of antifungal candidate genes into European chestnut (Castanea sativa) would provide an alternative approach to conventional breeding for production of chestnut trees that are tolerant to ink disease caused by Phytophthora spp. Overexpression of genes encoding PR proteins (such as thaumatin-like proteins), which display antifungal activity, may represent an important advance in control of the disease. We have used a chestnut thaumatin-like protein gene (CsTL1) isolated from European chestnut cotyledons and have achieved overexpression of the gene in chestnut somatic embryogenic lines used as target material. We have also acclimatized the transgenic plants and grown them on in the greenhouse. Here, we describe the various steps of the process, from the induction of somatic embryogenesis to the production of transgenic plants.


Assuntos
Fagaceae/crescimento & desenvolvimento , Fagaceae/genética , Engenharia Genética/métodos , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/crescimento & desenvolvimento , Técnicas de Cocultura , Fagaceae/fisiologia , Regeneração , Sementes/crescimento & desenvolvimento , Transformação Genética
13.
Rev Biol Trop ; 62(2): 809-18, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25102660

RESUMO

Paulownia tomentosa is a fast-growing tree species with a considerable economic potential because of its value for wood as well as its high biomass production, and elevated stress tolerance. The objective of the present study was to evaluate the development of adventitious buds in leaves obtained from four-week-old shoots of P. tomentosa, in order to identify the cells involved in in vitro adventitious bud development. Leaves (proximal halves with the petiole) from the first node were excised from four-week-old micropropagated shoots, and cultured on Murashige and Skoog medium, supplemented with 3% (w/v) sucrose, 0.6% (w/v) Sigma agar, 22.7 microM thidiazuron (TDZ) and 2.9 microM indole-3-acetic acid for two weeks, explants were then transferred to the same medium with 0.44 microM N6-benzyladenine for another four weeks. Five explants were collected daily during the two first weeks in TDZ treatment. A total of 140 samples were processed. Most of the buds developed indirectly from the callus formed in the petiole stub, and they became visible after eight-ten days of culture, although some buds were also observed in the area of the laminar cut at the level of the veins. The first histological changes could be observed after two-three days of culture, with the dedifferentiation of some subepidermal and inner parenchyma cells, which exhibited a large, prominent nucleus, densely-stained cytoplasm and a high nucleus-to-cell area ratio. Proliferation of these cells gives rise to meristemoid formation after seven-ten days of culture. Organized cell division in meristemoids allows the formation of bud primordia that emerged from the explants surface. The progressive structural differentiation of the apical meristem, leaf primordia, and procambium strands, led to formation of complete buds that were observed in the exterior of the explants after 10-15 days of culture. Direct development of buds from cells in the subepidermic and/or epidermic layers were observed on the adaxial surface of the petiole. This protocol may be a useful tool for the application of genetic transformation techniques, as it enables to determine specific regions in the foliar explants where the meristemoids formation will take place, and therefore to determine which cells should be the object of genetic transformation.


Assuntos
Magnoliopsida/embriologia , Organogênese Vegetal/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Regeneração/fisiologia , Magnoliopsida/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas , Técnicas de Cultura de Tecidos
14.
Rev. biol. trop ; 62(2): 809-812, Jun.-Aug. 2014. ilus
Artigo em Inglês | LILACS | ID: lil-715473

RESUMO

Paulownia tomentosa is a fast-growing tree species with a considerable economic potential because of its value for wood as well as its high biomass production, and elevated stress tolerance. The objective of the present study was to evaluate the development of adventitious buds in leaves obtained from four-week-old shoots of P. tomentosa, in order to identify the cells involved in in vitro adventitious bud development. Leaves (proximal halves with the petiole) from the first node were excised from four-week-old micropropagated shoots, and cultured on Murashige and Skoog medium, supplemented with 3% (w/v) sucrose, 0.6% (w/v) Sigma agar, 22.7µM thidiazuron (TDZ) and 2.9µM indole-3-acetic acid for two weeks, explants were then transferred to the same medium with 0.44µM N6-benzyladenine for another four weeks. Five explants were collected daily during the two first weeks in TDZ treatment. A total of 140 samples were processed. Most of the buds developed indirectly from the callus formed in the petiole stub, and they became visible after eight-ten days of culture, although some buds were also observed in the area of the laminar cut at the level of the veins. The first histological changes could be observed after two-three days of culture, with the dedifferentiation of some subepidermal and inner parenchyma cells, which exhibited a large, prominent nucleus, densely-stained cytoplasm and a high nucleusto-cell area ratio. Proliferation of these cells gives rise to meristemoid formation after seven-ten days of culture. Organized cell division in meristemoids allows the formation of bud primordia that emerged from the explants surface. The progressive structural differentiation of the apical meristem, leaf primordia, and procambium strands, led to formation of complete buds that were observed in the exterior of the explants after 10-15 days of culture. Direct development of buds from cells in the subepidermic and/or epidermic layers were observed ...


Paulownia tomentosa es un árbol de rápido crecimiento y con un gran potencial económico por su madera, su utilización para la producción de biocombustible, así como su alto rendimiento en la producción de biomasa y su elevada tolerancia al estrés. El objetivo del presente trabajo ha sido evaluar el desarrollo a nivel histológico de yemas adventicias en hojas de Paulownia tomentosa. Hojas del primer entrenudo de brotes de cuatro semanas cultivados in vitro, fueron cultivadas en medio de Murashige y Skoog complementado con 22.7µM tidiazuron y 2.9µM ácido indol acético durante dos semanas. Los explantos fueron posteriormente transferidos a igual medio con 0.44µM N6 -benciladenina durante otras cuatro semanas. Se recogieron cinco muestras diarias durante las dos primeras semanas de tratamiento en medio con TDZ, procesando un total de 140 muestras. La mayoría de las yemas se desarrollan indirectamente a partir del callo formado en la superficie de corte del pecíolo. Después de dos-tres días de cultivo se observan los primeros cambios histológicos, con la desdiferenciación de algunas células de las capas subepidérmicas y del parénquima interno. La posterior proliferación de estas células da lugar a la formación de los meristemoides después de siete-diez días de cultivo. La progresiva diferenciación de estos meristemoides da lugar a la formación de las yemas que son visibles al exterior a partir de los 10-15 días. En la superficie adaxial del pecíolo se observó la formación de yemas adventicias de forma directa. Este protocolo puede ser de gran utilidad para la determinación de las células más adecuadas para los procesos de transformación genética.


Assuntos
Magnoliopsida/embriologia , Organogênese Vegetal/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Regeneração/fisiologia , Magnoliopsida/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas , Técnicas de Cultura de Tecidos
15.
Tree Physiol ; 32(11): 1389-402, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23086811

RESUMO

The availability of a system for direct transfer of antifungal candidate genes into European chestnut (Castanea sativa Mill.) would offer an alternative approach to conventional breeding for production of chestnut trees tolerant to ink disease caused by Phytophthora spp. For the first time, a chestnut thaumatin-like protein gene (CsTL1), isolated from chestnut cotyledons, has been overexpressed in three chestnut somatic embryogenic lines. Transformation experiments have been performed using an Agrobacterium tumefaciens Smith and Townsend vector harboring the neomycin phosphotransferase (NPTII) selectable and the green fluorescent protein (EGFP) reporter genes. The transformation efficiency, determined on the basis of the fluorescence of surviving explants, was clearly genotype dependent and ranged from 32.5% in the CI-9 line to 7.1% in the CI-3 line. A total of 126 independent transformed lines were obtained. The presence and integration of chestnut CsTL1 in genomic DNA was confirmed by polymerase chain reaction (PCR) and Southern blot analyses. Quantitative real-time PCR revealed that CsTL1 expression was up to 13.5-fold higher in a transgenic line compared with its corresponding untransformed line. In only one of the 11 transformed lines tested, expression of the CsTL1 was lower than the control. The remaining 115 transformed lines were successfully subjected to cryopreservation. Embryo proliferation was achieved in all of the transgenic lines regenerated and the transformed lines showed a higher mean number of cotyledonary stage embryos and total number of embryos per embryo clump than their corresponding untransformed lines. Transgenic plants were regenerated after maturation and germination of transformed somatic embryos. Furthermore, due to the low plantlet conversion achieved, axillary shoot proliferation cultures were established from partially germinated embryos (only shoot development), which were multiplied and rooted according to procedures already established. Transgenic plants were acclimatized and grown in a greenhouse. No phenotypic differences were found with control plants, suggesting no potential cytotoxic effects of the green fluorescent protein. The results reported in the present work could be considered as a first step toward the production of fungal-disease tolerant cisgenic chestnut plants.


Assuntos
Fagaceae/genética , Proteínas de Plantas/genética , Sementes/genética , Transformação Genética , Agrobacterium tumefaciens , Cruzamento , Cotilédone/anatomia & histologia , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Criopreservação , Cisteína/metabolismo , Fagaceae/anatomia & histologia , Fagaceae/crescimento & desenvolvimento , Expressão Gênica , Vetores Genéticos , Genótipo , Germinação , Proteínas de Fluorescência Verde , Canamicina Quinase/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/anatomia & histologia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Técnicas de Embriogênese Somática de Plantas , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Sementes/anatomia & histologia , Sementes/crescimento & desenvolvimento , Árvores
16.
Methods Mol Biol ; 877: 247-63, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22610633

RESUMO

The ability of plants to remove pollutants from the environment is currently used in a simple and low-cost cleaning technology known as phytoremediation. Unfortunately, little is known about the metabolic pathways involved in the transformation of xenobiotic compounds and the ability of certain plants to tolerate, detoxify, and store high concentrations of heavy metals. Plant cell and tissue culture is considered an important tool for fundamental studies that provide information about the plant-contaminant relationships, help to predict plant responses to environmental contaminants, and improve the design of plants with enhanced characteristics for phytoremediation. Callus, cell suspensions, hairy roots, and shoot multiplication cultures are used to study the interactions between plants and pollutants under aseptic conditions. Many plant species have an inherent ability to accumulate/metabolize a variety of pollutants, but they normally produce little biomass. However, fast-growing trees are excellent candidates for phytoremediation because of their rapid growth, extensive root system, and high water uptake. This chapter outlines the in vitro plant production of both somaclonal variants and transgenic plants of Populus spp. that exhibit high tolerance to heavy metals.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais/análise , Metais Pesados/análise , Populus/química , Populus/crescimento & desenvolvimento , Técnicas de Cultura de Tecidos , Biodegradação Ambiental , Poluentes Ambientais/metabolismo , Metais Pesados/metabolismo
17.
Rev Biol Trop ; 59(1): 447-53, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21513204

RESUMO

Cedrela odorata (Meliaceae) is considered as one of the most valuable forest tree in the tropics. Clonal propagation of this species provide an alternative method to propagate superior genotypes, being the production of good quality adventitious roots one of the most important steps in micropropagation techniques. The sequence of anatomical changes that takes place during the formation of adventitious roots in shoots of Cedrela odorata cultured in vitro is described in this study. Eigth-week-old shoots, from multiplication cultures, were rooted in Murashige and Skoog's medium (1962) with half-strength macronutrients and with 0 or 1 mg/l indole-3-butyric acid (IBA). Between 12 and 24h after the start of rooting, some cambium, phloem and interfascicular parenchyma cells became dense cytoplasm, nuclei with prominent nucleoli and the first cell divisions were observed, especially in shoots treated with auxin (dedifferentiation phase). After 3-4 days, the number of dedifferentiated cells and mitotic divisions increased considerably, and the formation of groups of some 30-40 meristematic cells (meristemoids) was observed (induction phase). The first primordial roots developed from the 4th-5th day. The vascular tissues of these primordia connected to those of the explant, and roots began to emerge from the base by day 6. Development of the primordial roots was similar in the control shoots and shoots treated with 1 mg/l IBA, although there were more roots per explant in the latter.


Assuntos
Cedrela/anatomia & histologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/anatomia & histologia , Cedrela/efeitos dos fármacos , Cedrela/crescimento & desenvolvimento , Divisão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meios de Cultura , Ácidos Indolacéticos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Fatores de Tempo
18.
Rev. biol. trop ; 59(1): 447-453, mar. 2011. ilus
Artigo em Inglês | LILACS | ID: lil-638078

RESUMO

Cedrela odorata (Meliaceae) is considered as one of the most valuable forest tree in the tropics. Clonal propagation of this species provide an alternative method to propagate superior genotypes, being the production of good quality adventitious roots one of the most important steps in micropropagation techniques. The sequence of anatomical changes that takes place during the formation of adventitious roots in shoots of Cedrela odorata cultured in vitro is described in this study. Eigth-week-old shoots, from multiplication cultures, were rooted in Murashige and Skoog´s medium (1962) with half- strength macronutrients and with 0 or 1mg/l indole-3-butyric acid (IBA). Between 12 and 24h after the start of rooting, some cambium, phloem and interfascicular parenchyma cells became dense cytoplasm, nuclei with prominent nucleoli and the first cell divisions were observed, especially in shoots treated with auxin (dedifferentiation phase). After 3-4 days, the number of dedifferentiated cells and mitotic divisions increased considerably, and the formation of groups of some 30-40 meristematic cells (meristemoids) was observed (induction phase). The first primordial roots developed from the 4th-5th day. The vascular tissues of these primordia connected to those of the explant, and roots began to emerge from the base by day 6. Development of the primordial roots was similar in the control shoots and shoots treated with 1mg/l IBA, although there were more roots per explant in the latter. Rev. Biol. Trop. 59 (1): 447-453. Epub 2011 March 01.


Cedrela odorata (Meliaceae) es una especie tropical de gran valor económico. La propagación in vitro de esta especie ofrece una vía alternativa para la clonación de genotipos superiores, siendo la formación de un buen sistema radical uno de los pasos claves en la micropropagación. En este trabajo analizamos la secuencia de cambios anatómicos que tienen lugar durante la formación de raíces adventicias en microestaquillas de Cedrela odorata. Para el enraizamiento se utilizó el medio MS con los macronutrientes reducidos a la mitad, suplementado con AIB 0 ó 1mg/l. A partir de las 12-24 horas del comienzo del enraizamiento, se observaron los primeros cambios en las células del cambium, del floema y del parénquima interfascicular (fase de diferenciación). Después de 3-4 días, aparecen grupos de células meristemáticas (fase de inducción). Los primordios se desarrollan después de 4-5 días, siendo visibles al exterior a partir del sexto día (fase de emergencia). El desarrollo de las raíces fue similar en ambos tratamientos, pero la presencia de AIB aumenta el número de raíces.


Assuntos
Cedrela/anatomia & histologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/anatomia & histologia , Meios de Cultura , Cedrela/efeitos dos fármacos , Cedrela/crescimento & desenvolvimento , Divisão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Fatores de Tempo
19.
Methods Mol Biol ; 710: 201-13, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21207271

RESUMO

For Castanea sativa (European chestnut), a species with recalcitrant seeds that is not easily propagated vegetatively, cryopreservation is one of the most promising techniques for maintaining genetic resource diversity and for conservation of selected germplasms. Long-term conservation of selected seeds and valuable embryogenic lines can be achieved through the cryopreservation of zygotic embryonic axes and somatic embryos, respectively. This chapter describes methods for the desiccation-based cryostorage of zygotic embryonic axes, and the vitrification-based cryopreservation of somatic embryos. For zygotic embryonic axes, the highest post-thaw survival and plantlet recovery rates are obtained by desiccation in a laminar flow hood to 20-25% moisture content, followed by direct immersion in liquid nitrogen. For somatic embryos, embryogenesis resumption rates of over 60% are achieved by preculture of embryo clumps for 3 days on solid medium containing 0.3 M sucrose, incubation in PVS2 vitrification solution for 60 min at 0°C, and direct immersion in liquid nitrogen. Plantlet recovery from cryostored embryogenic lines requires proliferation of the thawed embryos and subsequent maturation before germination and conversion into plantlets.


Assuntos
Fagaceae/embriologia , Sementes/crescimento & desenvolvimento , Criopreservação , Meios de Cultura , Dessecação , Germinação , Vitrificação
20.
Environ Sci Technol ; 42(19): 7405-10, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18939578

RESUMO

Trees belonging to the genus Populus are often used for phytoremediation due to their deep root formation, fast growth and high transpiration rates. Here, we study the capacity of transgenic hybrid aspen (Populus tremula x tremuloides var. Etropole) which expresses the bacterial nitroreductase gene, pnrA, to tolerate and take-up greater amounts of the toxic and recalcitrant explosive, 2,4,6-trinitrotoluene (TNT) from contaminated waters and soil. Transgenic aspen tolerate up to 57 mg TNT/L in hydroponic media and more than 1000 mg TNT/ kg soil, whereas the parental aspen could not endure in hydroponic culture with more than 11 mg TNT/L or soil with more than 500 mg TNT/kg. Likewise, the phytotoxicological limit for transgenic plants to a constant concentration of TNT was 20 mg TNT/L while wild-type plants only tolerated 10 mg TNT/L. Transgenic plants also showed improved uptake of TNT over wild-type plants when the original TNT concentration was above 35 mg TNT/L in liquid media or 750 mg TNT/kg in soil. Assays with 13C-labeled TNT show rapid adsorption of TNT to the root surface followed by a slower entrance rate into the plant. Most of the 13C-carbon from the labeled TNT taken up bythe plant (> 95%) remains in the root with little translocation to the stem. Altogether, transgenic aspen expressing pnrA are highly interesting for phytoremediation applications on contaminated soil and underground aquifers.


Assuntos
Bactérias/enzimologia , Nitrorredutases/metabolismo , Populus/genética , Populus/metabolismo , Trinitrotolueno/isolamento & purificação , Absorção , Adaptação Fisiológica , Biodegradação Ambiental , Isótopos de Carbono , Meios de Cultura , Hidroponia , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Populus/crescimento & desenvolvimento , Poluentes do Solo/metabolismo , Distribuição Tecidual , Trinitrotolueno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA