Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39032670

RESUMO

BACKGROUND: In a gene expression analysis comparing sinus mucosa samples from allergic fungal rhinosinusitis (AFRS) patients with samples from non-AFRS chronic rhinosinusitis with nasal polyp (CRSwNP) patients, the antimicrobial peptide (AMP) histatin 1 (HTN1) was found to be the most differentially downregulated gene in AFRS. OBJECTIVE: We sought to identify the molecular etiology of the downregulated expression of HTN1. METHODS: We used RT-PCR to compare the expression of AMPs and a fungistasis assay to evaluate the antifungal activity of sinus secretions. Using flow cytometry, we characterized the presence of TH17/TH22 cells and signal transducer and activator of transcription (STAT) signaling from AFRS patients, non-AFRS CRSwNP patients, and healthy controls. RESULTS: We confirmed decreased expression of AMPs in AFRS sinus mucosa with concordant decrease in antifungal activity in sinus secretions. IL-22 and IL-22-producing T cells were deficient within sinus mucosa of AFRS patients. In vitro studies demonstrated a defect in IL-6/STAT3 signaling critical for TH17/TH22 differentiation. Epithelial cells from AFRS patients could express AMPs when stimulated with exogenous IL-22/IL-17 and circulating TH17 cell abundance was normal. CONCLUSIONS: Similar to other hyper-IgE syndromes, but distinct from CRSwNP, AFRS patients express a defect in STAT3 activation limited to IL-6-dependent STAT3 phosphorylation that is critical for TH17/TH22 differentiation. This defect leads to a local deficiency of IL-17/IL-22 cytokines and deficient AMP expression within diseased sinus mucosa of AFRS patients. Our findings support evaluation of therapeutic approaches that enhance airway AMP production in AFRS.

2.
bioRxiv ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39071307

RESUMO

Adaptive immunity is critical to eliminate malignant cells, while multiple tumor-intrinsic factors can alter this protective function. Melanoma antigen-A4 (MAGE-A4), a cancer-testis antigen, is expressed in several solid tumors and correlates with poor survival in non-small cell lung cancer (NSCLC), but its role in altering antitumor immunity remains unclear. We found that expression of MAGE-A4 was highly associated with the loss of PTEN , a tumor suppressor, in human NSCLC. Here we show that constitutive expression of human MAGE-A4 combined with the loss of Pten in mouse airway epithelial cells results in metastatic adenocarcinoma enriched in CD138 + CXCR4 + plasma cells, predominantly expressing IgA. Consistently, human NSCLC expressing MAGE-A4 showed increased CD138 + IgA + plasma cell density surrounding tumors. The abrogation of MAGE-A4-responsive plasma cells (MARPs) decreased tumor burden, increased T cell infiltration and activation, and reduced CD163 + CD206 + macrophages in mouse lungs. These findings suggest MAGE-A4 promotes NSCLC tumorigenesis, in part, through the recruitment and retention of IgA + MARPs in the lungs.

3.
Elife ; 132024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722677

RESUMO

Environmental air irritants including nanosized carbon black (nCB) can drive systemic inflammation, promoting chronic obstructive pulmonary disease (COPD) and emphysema development. The let-7 microRNA (Mirlet7 miRNA) family is associated with IL-17-driven T cell inflammation, a canonical signature of lung inflammation. Recent evidence suggests the Mirlet7 family is downregulated in patients with COPD, however, whether this repression conveys a functional consequence on emphysema pathology has not been elucidated. Here, we show that overall expression of the Mirlet7 clusters, Mirlet7b/Mirlet7c2 and Mirlet7a1/Mirlet7f1/Mirlet7d, are reduced in the lungs and T cells of smokers with emphysema as well as in mice with cigarette smoke (CS)- or nCB-elicited emphysema. We demonstrate that loss of the Mirlet7b/Mirlet7c2 cluster in T cells predisposed mice to exaggerated CS- or nCB-elicited emphysema. Furthermore, ablation of the Mirlet7b/Mirlet7c2 cluster enhanced CD8+IL17a+ T cells (Tc17) formation in emphysema development in mice. Additionally, transgenic mice overexpressing Mirlet7g in T cells are resistant to Tc17 and CD4+IL17a+ T cells (Th17) development when exposed to nCB. Mechanistically, our findings reveal the master regulator of Tc17/Th17 differentiation, RAR-related orphan receptor gamma t (RORγt), as a direct target of Mirlet7 in T cells. Overall, our findings shed light on the Mirlet7/RORγt axis with Mirlet7 acting as a molecular brake in the generation of Tc17 cells and suggest a novel therapeutic approach for tempering the augmented IL-17-mediated response in emphysema.


Assuntos
Diferenciação Celular , Regulação para Baixo , MicroRNAs , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Enfisema Pulmonar , Células Th17 , Animais , Feminino , Humanos , Masculino , Camundongos , Interleucina-17/metabolismo , Interleucina-17/genética , Pulmão/patologia , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Células Th17/imunologia , Células Th17/metabolismo
4.
Nat Commun ; 15(1): 216, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172101

RESUMO

Post-acute sequelae of SARS-CoV-2 (PASC) is a significant public health concern. We describe Patient Reported Outcomes (PROs) on 590 participants prospectively assessed from hospital admission for COVID-19 through one year after discharge. Modeling identified 4 PRO clusters based on reported deficits (minimal, physical, mental/cognitive, and multidomain), supporting heterogenous clinical presentations in PASC, with sub-phenotypes associated with female sex and distinctive comorbidities. During the acute phase of disease, a higher respiratory SARS-CoV-2 viral burden and lower Receptor Binding Domain and Spike antibody titers were associated with both the physical predominant and the multidomain deficit clusters. A lower frequency of circulating B lymphocytes by mass cytometry (CyTOF) was observed in the multidomain deficit cluster. Circulating fibroblast growth factor 21 (FGF21) was significantly elevated in the mental/cognitive predominant and the multidomain clusters. Future efforts to link PASC to acute anti-viral host responses may help to better target treatment and prevention of PASC.


Assuntos
Líquidos Corporais , COVID-19 , Feminino , Humanos , SARS-CoV-2 , COVID-19/complicações , Linfócitos B , Progressão da Doença , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA