Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Materials (Basel) ; 17(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38998364

RESUMO

High-performance hydrogen sulfide (H2S) sensors are mandatory for many industrial applications. However, the development of H2S sensors still remains a challenge for researchers. In this work, we report the study of a TiO2-based conductometric sensor for H2S monitoring at low concentrations. TiO2 samples were first synthesized using the sol-gel route, annealed at different temperatures (400 and 600 °C), and thoroughly characterized to evaluate their morphological and microstructural properties. Scanning electronic microscopy, Raman scattering, X-ray diffraction, and FTIR spectroscopy have demonstrated the formation of clusters of pure anatase in the TiO2 phase. Increasing the calcination temperature to 600 °C enhanced TiO2 crystallinity and particle size (from 11 nm to 51 nm), accompanied by the transition to the rutile phase and a slight decrease in band gap (3.31 eV for 400 °C to 3.26 eV for 600 °C). Sensing tests demonstrate that TiO2 annealed at 400 °C displays good performances (sensor response Ra/Rg of ~3.3 at 2.5 ppm and fast response/recovery of 8 and 23 s, respectively) for the detection of H2S at low concentrations in air.

2.
Materials (Basel) ; 17(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673077

RESUMO

The laser surface texturing (LST) technique has recently been used to enhance adhesion bond strength in various coating applications and to create structures with controlled hydrophobic or superhydrophobic surfaces. The texturing processing parameters can be adjusted to tune the surface's polarity, thereby controlling the ratio between the polar and dispersed components of the surface free energy and determining its hydrophobic character. The aim of this work is to systematically select appropriate laser and scan head parameters for high-quality surface topography of metal-based materials. A correlation between texturing parameters and wetting properties was made in view of several technological applications, i.e., for the proper growth of conformal layers onto laser-textured metal surfaces. Surface analyses, carried out by scanning electron microscopy and profilometry, reveal the presence of periodic microchannels decorated with laser-induced periodic surface structures (LIPSS) in the direction parallel to the microchannels. The water contact angle varies widely from about 20° to 100°, depending on the treated material (titanium, nickel, etc.). Nowadays, reducing the wettability transition time from hydrophilicity to hydrophobicity, while also changing environmental conditions, remains a challenge. Therefore, the characteristics of environmental dust and its influence on the properties of the picosecond laser-textured surface (e.g., chemical bonding of samples) have been studied while monitoring ambient conditions.

3.
Sensors (Basel) ; 23(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38067949

RESUMO

The development of novel nanomaterials as highly efficient gas-sensing materials is envisaged as one of the most important routes in the field of gas-sensing research. However, developing stable, selective, and efficient materials for these purposes is a highly challenging task requiring numerous design attempts. In this work, a ZrO2/Co3O4 composite is reported, for the first time, as a gas-sensing material for the detection of ethanol. The sensitive and selective detection of ethanol gas at 200 °C has been demonstrated for the ZrO2/Co3O4 (0.20 wt%/0.20 wt%)-based sensor. Furthermore, the sensor showed a very low response/recovery time of 56 s and 363 s, respectively, in response to a pulse of 20 ppm of ethanol and good stability. The interesting gas-sensing property of ZrO2/Co3O4 can be ascribed to both the porous structure, which facilitates the interaction between the target gas and the sensing site, and the p-p-junction-induced built-in electric field. These results indicate that the ZrO2/Co3O4 composite can serve as a heterostructured nanomaterial for the detection of ethanol gas.

4.
Materials (Basel) ; 16(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37109937

RESUMO

With the goal of substituting a hard metallic material for the soft Ultra High Molecular Weight Polyethylene (UHMWPE) presently used to make the bases of skis for alpine skiing, we used two non-thermodynamic equilibrium surface treatments with ultra-short (7-8 ps) laser pulses to modify the surface of square plates (50 × 50 mm2) made of austenitic stainless steel AISI 301H. By irradiating with linearly polarized pulses, we obtained Laser Induced Periodic Surface Structures (LIPSS). By laser machining, we produced a laser engraving on the surface. Both treatments produce a surface pattern parallel to one side of the sample. For both treatments, we measured with a dedicated snow tribometer the friction coefficient µ on compacted snow at different temperatures (-10 °C; -5 °C; -3 °C) for a gliding speed range between 1 and 6.1 ms-1. We compared the obtained µ values with those of untreated AISI 301H plates and of stone grinded, waxed UHMWPE plates. At the highest temperature (-3 °C), near the snow melting point, untreated AISI 301H shows the largest µ value (0.09), much higher than that of UHMWPE (0.04). Laser treatments on AISI 301H gave lower µ values approaching UHMWPE. We studied how the surface pattern disposition, with respect to the gliding direction of the sample on snow, affects the µ trend. For LIPSS with pattern, orientation perpendicular to the gliding direction on snow µ (0.05) is comparable with that of UHMWPE. We performed field tests on snow at high temperature (from -0.5 to 0 °C) using full-size skis equipped with bases made of the same materials used for the laboratory tests. We observed a moderate difference in performance between the untreated and the LIPSS treated bases; both performed worse than UHMWPE. Waxing improved the performance of all bases, especially LIPSS treated.

5.
Molecules ; 28(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36985534

RESUMO

Water is one of the most important compounds on Earth, yet its material properties are still poorly understood. Here, we use a recently developed two-state, two-(time)scale (TS2) dynamic mean-field model combined with the two-state Sanchez-Lacombe (SL) thermodynamic theory in order to describe the equation of state (density as a function of temperature and pressure) and diffusivity of liquid water. In particular, it is shown that in a relatively wide temperature and pressure range (160 K < T < 360 K; 0 < P < 100 MPa), density and self-diffusion obey a special type of dynamic scaling, similar to the "τTV" scaling of Casalini and Roland, but with the negative exponent γ. The model predictions are consistent with experimental data. The new equation of state can be used for various process models and generalized to include multicomponent mixtures.

6.
Polymers (Basel) ; 15(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36987370

RESUMO

Intraocular lenses (IOLs) are commonly implanted after surgical removal of a cataractous lens. A variety of IOL materials are currently available, including collamer, hydrophobic acrylic, hydrophilic acrylic, PHEMA copolymer, polymethylmethacrylate (PMMA), and silicone. High-quality polymers with distinct physical and optical properties for IOL manufacturing and in line with the highest quality standards on the market have evolved to encompass medical needs. Each of them and their packaging show unique advantages and disadvantages. Here, we highlight the evolution of polymeric materials and mainly the current state of the art of the unique properties of some polymeric systems used for IOL design, identifying current limitations for future improvements. We investigate the characteristics of the next generation of IOL materials, which must satisfy biocompatibility requirements and have tuneable refractive index to create patient-specific eye power, preventing formation of posterior capsular opacification.

7.
Materials (Basel) ; 16(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36984315

RESUMO

The synthesis of contaminant-free silver@linear carbon chains (Ag@LCCs) nanohybrid systems, at different Ag/LCCs ratios, by pulsed laser ablation was studied. The ablation products were first characterized by several diagnostic techniques: conventional UV-Vis optical absorption and micro-Raman spectroscopies, as well as scanning electron microscopy, operating in transmission mode. The experimental evidence was confirmed by the theoretical simulations' data. Furthermore, to gain a deeper insight into the factors influencing metal@LCCs biological responses in relation to their physical properties, in this work, we investigated the bioproperties of the Ag@LCCs nanosystems towards a wound-healing activity. We found that Ag@LCC nanohybrids maintain good antibacterial properties and possess a better capability, in comparison with Ag NPs, of interacting with mammalian cells, allowing us to hypothesize that mainly the Ag@LCCs 3:1 might be suitable for topical application in wound healing, independent of (or in addition to) the antibacterial effect.

8.
Polymers (Basel) ; 14(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36501713

RESUMO

Adaptive optics (AO) is employed for the continuous measurement and correction of ocular aberrations. Human eye refractive errors (lower-order aberrations such as myopia and astigmatism) are corrected with contact lenses and excimer laser surgery. Under twilight vision conditions, when the pupil of the human eye dilates to 5-7 mm in diameter, higher-order aberrations affect the visual acuity. The combined use of wavefront (WF) technology and AO systems allows the pre-operative evaluation of refractive surgical procedures to compensate for the higher-order optical aberrations of the human eye, guiding the surgeon in choosing the procedure parameters. Here, we report a brief history of AO, starting from the description of the Shack-Hartmann method, which allowed the first in vivo measurement of the eye's wave aberration, the wavefront sensing technologies (WSTs), and their principles. Then, the limitations of the ocular wavefront ascribed to the IOL polymeric materials and design, as well as future perspectives on improving patient vision quality and meeting clinical requests, are described.

10.
Biomolecules ; 12(8)2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-36008954

RESUMO

The last few years have increasingly emphasized the need to develop new active antiviral products obtained from artificial synthesis processes using nanomaterials, but also derived from natural matrices. At the same time, advanced computational approaches have found themselves fundamental in the repurposing of active therapeutics or for reducing the very long developing phases of new drugs discovery, which represents a real limitation, especially in the case of pandemics. The first part of the review is focused on the most innovative nanomaterials promising both in the field of therapeutic agents, as well as measures to control virus spread (i.e., innovative antiviral textiles). The second part of the review aims to show how computer-aided technologies can allow us to identify, in a rapid and therefore constantly updated way, plant-derived molecules (i.e., those included in terpenoids) potentially able to efficiently interact with SARS-CoV-2 cell penetration pathways.


Assuntos
Tratamento Farmacológico da COVID-19 , Nanoestruturas , Antivirais/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Computadores , Humanos , Nanoestruturas/uso terapêutico , SARS-CoV-2
11.
Materials (Basel) ; 15(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35629727

RESUMO

Gold nanoparticles (Au NPs) have received great attention owing to their biocompatible nature, environmental, and widespread biomedical applications. Au NPs are known as capable to regulate inflammatory responses in several tissues and organs; interestingly, lower toxicity in conjunction with anti-inflammatory effects was reported to occur with Au NPs treatment. Several variables drive this benefit-risk balance, including Au NPs physicochemical properties such as their morphology, surface chemistry, and charge. In our research we prepared hybrid Au@LCC nanocolloids by the Pulsed Laser Ablation, which emerged as a suitable chemically clean technique to produce ligand-free or functionalized nanomaterials, with tight control on their properties (product purity, crystal structure selectivity, particle size distribution). Here, for the first time to our knowledge, we have investigated the bioproperties of Au@LCCs. When tested in vitro on intestinal epithelial cells exposed to TNF-α, Au@LCCs sample at the ratio of 2.6:1 showed a significantly reduced TNF gene expression and induced antioxidant heme oxygenase-1 gene expression better than the 1:1 dispersion. Although deeper investigations are needed, these findings indicate that the functionalization with LCCs allows a better interaction of Au NPs with targets involved in the cell redox status and inflammatory signaling.

12.
Molecules ; 26(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34641442

RESUMO

Liquid's behaviour, when close to critical points, is of extreme importance both for fundamental research and industrial applications. A detailed knowledge of the structural-dynamical correlations in their proximity is still today a target to reach. Liquid water anomalies are ascribed to the presence of a second liquid-liquid critical point, which seems to be located in the very deep supercooled regime, even below 200 K and at pressure around 2 kbar. In this work, the thermal behaviour of the self-diffusion coefficient for liquid water is analyzed, in terms of a two-states model, for the first time in a very wide thermal region (126 K < T < 623 K), including those of the two critical points. Further, the corresponding configurational entropy and isobaric-specific heat have been evaluated within the same interval. The two liquid states correspond to high and low-density water local structures that play a primary role on water dynamical behavior over 500 K.

13.
Polymers (Basel) ; 13(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502937

RESUMO

Traditional pharmacotherapy suffers from multiple drawbacks that hamper patient treatment such as antibiotic resistances or low drug selectivity and toxicity during systemic applications. Some functional hybrid nanomaterials are designed to handle the drug release process under remote-control. More attention has recently been paid to synthetic polyelectrolytes for their intrinsic properties which allow them to rearrange into compact structures, ideal to be used as drug carriers or probes influencing biochemical processes. The presence of Ag nanoparticles (NPs) in the Poly methyl acrylate (PMA) matrix leads to an enhancement of drug release efficiency, even using a low-power laser whose wavelength is far from the Ag Surface Plasmon Resonance (SPR) peak. Further, compared to the colloids, the nanofiber-based drug delivery system has shown shorter response time and more precise control over the release rate. The efficiency and timing of involved drug release mechanisms has been estimated by the Weibull distribution function, whose parameters indicate that the release mechanism of nanofibers obeys Fick's first law while a non-Fickian character controlled by diffusion and relaxation of polymer chains occurs in the colloidal phase.

14.
Sensors (Basel) ; 21(7)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916680

RESUMO

Pure, mixed and doped metal oxides (MOX) have attracted great interest for the development of electrical and electrochemical sensors since they are cheaper, faster, easier to operate and capable of online analysis and real-time identification. This review focuses on highly sensitive chemoresistive type sensors based on doped-SnO2, RhO, ZnO-Ca, Smx-CoFe2-xO4 semiconductors used to detect toxic gases (H2, CO, NO2) and volatile organic compounds (VOCs) (e.g., acetone, ethanol) in monitoring of gaseous markers in the breath of patients with specific pathologies and for environmental pollution control. Interesting results about the monitoring of biochemical substances as dopamine, epinephrine, serotonin and glucose have been also reported using electrochemical sensors based on hybrid MOX nanocomposite modified glassy carbon and screen-printed carbon electrodes. The fundamental sensing mechanisms and commercial limitations of the MOX-based electrical and electrochemical sensors are discussed providing research directions to bridge the existing gap between new sensing concepts and real-world analytical applications.

15.
Molecules ; 26(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669712

RESUMO

Hydroxyapatite (HA) is the main inorganic mineral that constitutes bone matrix and represents the most used biomaterial for bone regeneration. Over the years, it has been demonstrated that HA exhibits good biocompatibility, osteoconductivity, and osteoinductivity both in vitro and in vivo, and can be prepared by synthetic and natural sources via easy fabrication strategies. However, its low antibacterial property and its fragile nature restricts its usage for bone graft applications. In this study we functionalized a MgHA scaffold with gold nanorods (AuNRs) and evaluated its antibacterial effect against S. aureus and E. coli in both suspension and adhesion and its cytotoxicity over time (1 to 24 days). Results show that the AuNRs nano-functionalization improves the antibacterial activity with 100% bacterial reduction after 24 h. The toxicity study, however, indicates a 4.38-fold cell number decrease at 24 days. Although further optimization on nano-functionalization process are needed for cytotoxicity, these data indicated that Au-NRs nano-functionalization is a very promising method for improving the antibacterial properties of HA.


Assuntos
Anti-Infecciosos/farmacologia , Durapatita/farmacologia , Ouro/farmacologia , Magnésio/farmacologia , Nanotubos/química , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Nanotubos/ultraestrutura , Espectroscopia Fotoeletrônica , Staphylococcus aureus/efeitos dos fármacos , Alicerces Teciduais/química
16.
Materials (Basel) ; 15(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35009430

RESUMO

Polymers are widely employed in several fields thanks to their wide versatility and the easy derivatization routes. However, a wide range of commercial polymers suffer from limited use on a large scale due to their inert nature. Nowadays, acrylate and methacrylate polymers, which are respectively derivatives of acrylic or methacrylic acid, are among the most proposed materials for their useful characteristics like good biocompatibility, capping ability toward metal clusters, low price, potentially recyclability and reusability. Here, we discuss the advantages and challenges of this class of smart polymers focusing our attention on their current technological applications in medical, electronic, food packaging and environmental remediation fields. Furthermore, we deal with the main issue of their recyclability, considering that the current commercial bioplastics are not yet able to meet the global needs as much as to totally replace fossil-fuel-based products. Finally, the most accredited strategies to reach recyclable composites based on acrylic polymers are described.

17.
Molecules ; 25(9)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403460

RESUMO

Silver (Ag)-grafted PMA (poly-methacrylic acid, sodium salt) nanocomposite loaded with sorafenib tosylate (SFT), an anticancer drug, showed good capability as a drug carrier allowing on-demand control of the dose, timing and duration of the drug release by laser irradiation stimuli. In this study, the preparation of Ag-PMA capsules loaded with SFT by using sacrificial silica microparticles as templates was reported. A high drug loading (DL%) of ∼13% and encapsulation efficiency (EE%) of about 76% were obtained. The photo-release profiles were regulated via the adjustment of light wavelength and power intensity. A significant improvement of SFT release (14% vs. 21%) by comparing SFT-Ag-PMA capsules with Ag-PMA colloids under the same experimental conditions was observed. Moreover, an increase of drug release by up to 35% was reached by tuning the laser irradiation wavelength near to Ag nanoparticles' surface plasmon resonance (SPR). These experimental results together with more economical use of the active component suggest the potentiality of SFT-Ag-PMA capsules as a smart drug delivery system.


Assuntos
Antineoplásicos , Nanopartículas Metálicas/química , Nanocápsulas/química , Ácidos Polimetacrílicos/química , Prata/química , Sorafenibe , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Lasers , Nanopartículas Metálicas/efeitos da radiação , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Nanocápsulas/efeitos da radiação , Polímeros/química , Dióxido de Silício/química , Ressonância de Plasmônio de Superfície , Temperatura
18.
Int J Mol Sci ; 21(2)2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963571

RESUMO

Numerous water characteristics are essentially ascribed to its peculiarity to form stronghydrogen bonds that become progressively more stable on decreasing the temperature. However, thestructural and dynamical implications of the molecular rearrangement are still subject of debate andintense studies. In this work, we observe that the thermodynamic characteristics of liquid water arestrictly connected to its dynamic characteristics. In particular, we compare the thermal behaviourof the isobaric specific heat of water, measured in different confinement conditions at atmosphericpressure (and evaluated by means of theoretical studies) with its configurational contribution obtainedfrom the values of the measured self-diffusion coefficient through the use of the Adam-Gibbsapproach. Our results confirm the existence of a maximum in the specific heat of water at about 225K and indicate that especially at low temperature the configurational contributions to the entropy aredominant.


Assuntos
Temperatura Baixa , Temperatura Alta , Modelos Teóricos , Água/química , Difusão , Entropia , Termodinâmica
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 228: 117660, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-31740118

RESUMO

The aim of this research is the identification of main and common physical-chemical parameters which induce paper degradation. A simple protocol to monitor the quality and molecular structure of ancient papers under natural degradation processes was proposed. Two-dimensional micro-Raman mapping were carried out. Then, point to point, the changes of both the cellulose Raman signature and fluorescence signal intensity were analysed. Modern papers were artificially aged to simulate the natural degradation and a comparison with the trend found for the ancient paper was presented and discussed. Cellulose degradation involves different mechanisms such as dehydration, cleaving of cellulose-glycosidic bonds and glucopyranose rings oxidation, that induce a reduction in the polymerization degree. As shown by the changes of Raman and fluorescence signals and NMR relaxation times, the rate of each processes depends on the initial amount of glycosidic bonds in the cellulose amorphous and crystalline regions, respectively. All these informations are useful both to define procedures to restore old documents and also to preserve the quality of modern papers for a long-term time.

20.
Int J Mol Sci ; 20(21)2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671726

RESUMO

The hydrogen density of states (DOS) in confined water has been probed by inelastic neutron scattering spectra in a wide range of its P-T phase diagram. The liquid-liquid transition and the dynamical crossover from the fragile (super-Arrhenius) to strong (Arrhenius) glass forming behavior have been studied, by taking into account the system polymorphism in both the liquid and amorphous solid phases. The interest is focused in the low energy region of the DOS ( E < 10 meV) and the data are discussed in terms of the energy landscape (local minima of the potential energy) approach. In this latest research, we consider a unit scale energy (EC) linked to the water local order governed by the hydrogen bonding (HB). All the measured spectra, scaled according to such energy, evidence a universal power law behavior with different exponents ( γ ) in the strong and fragile glass forming regions, respectively. In the first case, the DOS data obey the Debye squared-frequency law, whereas, in the second one, we obtain a value predicted in terms of the mode-coupling theory (MCT) ( γ ≃ 1.6 ).


Assuntos
Transição de Fase , Prótons , Água/química , Vidro , Ligação de Hidrogênio , Modelos Químicos , Nêutrons , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA