Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Science ; 373(6557): 876-882, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34413231

RESUMO

Translation termination, which liberates a nascent polypeptide from the ribosome specifically at stop codons, must occur accurately and rapidly. We established single-molecule fluorescence assays to track the dynamics of ribosomes and two requisite release factors (eRF1 and eRF3) throughout termination using an in vitro-reconstituted yeast translation system. We found that the two eukaryotic release factors bound together to recognize stop codons rapidly and elicit termination through a tightly regulated, multistep process that resembles transfer RNA selection during translation elongation. Because the release factors are conserved from yeast to humans, the molecular events that underlie yeast translation termination are likely broadly fundamental to eukaryotic protein synthesis.


Assuntos
Terminação Traducional da Cadeia Peptídica , Fatores de Terminação de Peptídeos/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Códon de Terminação , Transferência Ressonante de Energia de Fluorescência , Ligação Proteica , Biossíntese de Proteínas , Saccharomyces cerevisiae/metabolismo , Imagem Individual de Molécula
2.
RNA ; 25(7): 881-895, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31023766

RESUMO

Receptor for activated C kinase 1 (RACK1) is a eukaryote-specific ribosomal protein (RP) implicated in diverse biological functions. To engineer ribosomes for specific fluorescent labeling, we selected RACK1 as a target given its location on the small ribosomal subunit and other properties. However, prior results suggested that RACK1 has roles both on and off the ribosome, and such an exchange might be related to its various cellular functions and hinder our ability to use RACK1 as a stable fluorescent tag for the ribosome. In addition, the kinetics of spontaneous exchange of RACK1 or any RP from a mature ribosome in vitro remain unclear. To address these issues, we engineered fluorescently labeled human ribosomes via RACK1, and applied bulk and single-molecule biochemical analyses to track RACK1 on and off the human ribosome. Our results demonstrate that, despite its cellular nonessentiality from yeast to humans, RACK1 readily reassociates with the ribosome, displays limited conformational dynamics, and remains stably bound to the ribosome for hours in vitro. This work sheds insight into the biochemical basis of RPs exchange on and off a mature ribosome and provides tools for single-molecule analysis of human translation.


Assuntos
Proteínas de Neoplasias/metabolismo , Biossíntese de Proteínas , Receptores de Quinase C Ativada/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Células HeLa , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Ligação Proteica , Receptores de Quinase C Ativada/química , Receptores de Quinase C Ativada/genética , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/genética
3.
Proc Natl Acad Sci U S A ; 110(27): E2451-9, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23723348

RESUMO

Noncovalently "stacked" tetramethylrhodamine (TMR) dimers have been used to both report and perturb the allosteric equilibrium in GroEL. A GroEL mutant (K242C) has been labeled with TMR, close to the peptide-binding site in the apical domain, such that TMR molecules on adjacent subunits are able to form dimers in the T allosteric state. Addition of ATP induces the transition to the R state and the separation of the peptide-binding sites, with concomitant unstacking of the TMR dimers. A statistical analysis of the spectra allowed us to compute the number and orientation of TMR dimers per ring as a function of the average number of TMR molecules per ring. The TMR dimers thus serve as quantitative reporter of the allosteric state of the system. The TMR dimers also serve as a surrogate for substrate protein, substituting in a more homogeneous, quantifiable manner for the heterogeneous intersubunit, intraring, noncovalent cross-links provided by the substrate protein. The characteristic stimulation of the ATPase activity by substrate protein is also mimicked by the TMR dimers. Using an expanded version of the nested cooperativity model, we determine values for the free energy of the TT to TR and TR to RR allosteric equilibria to be 27 ± 11 and 46 ± 2 kJ/mol, respectively. The free energy of unstacking of the TMR dimers was estimated at 2.6 ± 1.0 kJ/mol dimer. These results demonstrate that GroEL can perform work during the T to R transition, supporting the iterative annealing model of chaperonin function.


Assuntos
Chaperonina 60/química , Sítio Alostérico , Substituição de Aminoácidos , Fenômenos Biofísicos , Chaperonina 60/genética , Chaperonina 60/metabolismo , Corantes Fluorescentes , Modelos Moleculares , Sondas Moleculares , Mutagênese Sítio-Dirigida , Multimerização Proteica , Estrutura Quaternária de Proteína , Rodaminas , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA