Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Geobiology ; 13(5): 409-23, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26099298

RESUMO

Archean and Proterozoic stromatolites are sparry or fine-grained and finely laminated; coarse-grained stromatolites, such as many found in modern marine systems, do not appear until quite late in the fossil record. The cause of this textural change and its relevance to understanding the evolutionary history of stromatolites is unclear. Cyanobacteria are typically considered the dominant stromatolite builders through time, but studies demonstrating the trapping and binding abilities of cyanobacterial mats are limited. With this in mind, we conducted experiments to test the grain trapping and binding capabilities of filamentous cyanobacterial mats and trapping in larger filamentous algal mats in order to better understand grain size trends in stromatolites. Mats were cut into squares, inclined in saltwater tanks at angles from 0 to 75° (approximating the angle of lamina in typical stromatolites), and grains of various sizes (fine sand, coarse sand, and fine pebbles) were delivered to their surface. Trapping of grains by the cyanobacterial mats depended strongly on (i) how far filaments protruded from the sediment surface, (ii) grain size, and (iii) the mat's incline angle. The cyanobacterial mats were much more effective at trapping fine grains beyond the abiotic slide angle than larger grains. In addition, the cyanobacterial mats actively bound grains of all sizes over time. In contrast, the much larger algal mats trapped medium and coarse grains at all angles. Our experiments suggest that (i) the presence of detrital grains beyond the abiotic slide angle can be considered a biosignature in ancient stromatolites where biogenicity is in question, and, (ii) where coarse grains are present within stromatolite laminae at angles beyond the abiotic angle of slide (e.g., most modern marine stromatolites), typical cyanobacterial-type mats are probably not solely responsible for the construction, giving insight into the evolution of stromatolite microfabrics through time.


Assuntos
Adesão Celular , Fenômenos Químicos , Clorófitas/crescimento & desenvolvimento , Cianobactérias/crescimento & desenvolvimento , Sedimentos Geológicos/microbiologia , Material Particulado , Clorófitas/fisiologia , Cianobactérias/fisiologia , Fatores de Tempo
2.
Geobiology ; 11(5): 397-405, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23786451

RESUMO

Marine phosphate-rich sedimentary deposits (phosphorites) are important geological reservoirs for the biologically essential nutrient phosphorous. Phosphorites first appear in abundance approximately 600 million years ago, but their proliferation at that time is poorly understood. Recent marine phosphorites spatially correlate with the habitats of vacuolated sulfide-oxidizing bacteria that store polyphosphates under oxic conditions to be utilized under sulfidic conditions. Hydrolysis of the stored polyphosphate results in the rapid precipitation of the phosphate-rich mineral apatite-providing a mechanism to explain the association between modern phosphorites and these bacteria. Whether sulfur bacteria were important to the formation of ancient phosphorites has been unresolved. Here, we present the remains of modern sulfide-oxidizing bacteria that are partially encrusted in apatite, providing evidence that bacterially mediated phosphogenesis can rapidly permineralize sulfide-oxidizing bacteria and perhaps other types of organic remains. We also describe filamentous microfossils that resemble modern sulfide-oxidizing bacteria from two major phosphogenic episodes in the geologic record. These microfossils contain sulfur-rich inclusions that may represent relict sulfur globules, a diagnostic feature of modern sulfide-oxidizing bacteria. These findings suggest that sulfur bacteria, which are known to mediate the precipitation of apatite in modern sediments, were also present in certain phosphogenic settings for at least the last 600 million years. If polyphosphate-utilizing sulfide-oxidizing bacteria also played a role in the formation of ancient phosphorites, their requirements for oxygen, or oxygen-requiring metabolites such as nitrate, might explain the temporal correlation between the first appearance of globally distributed marine phosphorites and increasing oxygenation of Neoproterozoic oceans.


Assuntos
Bactérias/metabolismo , Fósseis , Sedimentos Geológicos/microbiologia , Fosfatos/metabolismo , Sulfetos/metabolismo , California , China , Microscopia Eletrônica de Varredura , Oxigênio/metabolismo , Oceano Pacífico , Fósforo/metabolismo , Espectrometria por Raios X , Análise Espectral Raman
3.
Geobiology ; 9(5): 425-35, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21884363

RESUMO

Samples of digitate, branching, columnar stromatolites were collected from the steep sides and near horizontal top of four in situ boulders located on the southwestern side of Walker Lake, Nevada, to test the widely held assumption that stromatolite column formation represents a phototropic response. We would predict that the columns on the steeply dipping sides of the boulder would bend upwards toward the light during growth if phototropism was significant during stromatolite morphogenesis. Angle of growth measurements on >300 stromatolites demonstrate that the stromatolites grew nearly normal to their growth surface, regardless of the inclination of their growth surface. No significant differences in the distribution of growth angles between north-, south-, east-, or west-facing samples were observed, and stromatolite lamina thickness did not systematically vary with position on the boulder. The lack of a strong phototropic response does not rule out a biological origin for the Walker Lake structures, but it does suggest that phototropic growth was not a dominant factor controlling stromatolite morphogenesis in these stromatolites and that column formation cannot be uniquely attributed as a phototropic response in stromatolites. It is interesting to note that the morphology of the stromatolites on the top of the boulder is identical to stromatolites on the steep sides. Stromatolite morphogenetic models that predict branching typically require a vertically directed sedimentary component, a feature that would have likely affected the stromatolites on the tops of the boulders, but not the sides, suggesting that other factors may be important in stromatolite morphogenesis.


Assuntos
Sedimentos Geológicos/química , Lagos/química , Fototropismo , Cianobactérias/crescimento & desenvolvimento , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Nevada
4.
Geobiology ; 9(5): 411-24, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21777367

RESUMO

Stromatolites are commonly interpreted as evidence of ancient microbial life, yet stromatolite morphogenesis is poorly understood. We apply radiometric tracer and dating techniques, molecular analyses and growth experiments to investigate siliceous stromatolite morphogenesis in Obsidian Pool Prime (OPP), a hot spring in Yellowstone National Park. We examine rates of stromatolite growth and the environmental and/or biologic conditions that affect lamination formation and preservation, both difficult features to constrain in ancient examples. The "main body" of the stromatolite is composed of finely laminated, porous, light-dark couplets of erect (surface normal) and reclining (surface parallel) silicified filamentous bacteria, interrupted by a less-distinct, well-cemented "drape" lamination. Results from dating studies indicate a growth rate of 1-5 cm year(-1) ; however, growth is punctuated. (14)C as a tracer demonstrates that stromatolite cyanobacterial communities fix CO(2) derived from two sources, vent water (radiocarbon dead) and the atmosphere (modern (14)C). The drape facies contained a greater proportion of atmospheric CO(2) and more robust silica cementation (vs. the main body facies), which we interpret as formation when spring level was lower. Systematic changes in lamination style are likely related to environmental forcing and larger scale features (tectonic, climatic). Although the OPP stromatolites are composed of silica and most ancient forms are carbonate, their fine lamination texture requires early lithification. Without early lithification, whether silica or carbonate, it is unlikely that a finely laminated structure representing an ancient microbial mat would be preserved. In OPP, lithification on the nearly diurnal time scale is likely related to temperature control on silica solubility.


Assuntos
Bactérias/crescimento & desenvolvimento , DNA Bacteriano/análise , Biologia de Ecossistemas de Água Doce/métodos , Sedimentos Geológicos/microbiologia , Fontes Termais/microbiologia , Bactérias/classificação , Bactérias/genética , Radioisótopos de Carbono/análise , Césio/análise , Cianobactérias/classificação , Cianobactérias/genética , Cianobactérias/crescimento & desenvolvimento , DNA Bacteriano/genética , Sedimentos Geológicos/química , Fontes Termais/química , Interpretação de Imagem Assistida por Computador , Microscopia Eletrônica de Varredura , Filogenia , Datação Radiométrica , Rádio (Elemento)/análise , Análise de Sequência de DNA , Tório/análise , Wyoming
5.
Proc Natl Acad Sci U S A ; 104(36): 14266-71, 2007 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-17720806

RESUMO

The thermal evolution of Earth is governed by the rate of secular cooling and the amount of radiogenic heating. If mantle heat sources are known, surface heat flow at different times may be used to deduce the efficiency of convective cooling and ultimately the temporal character of plate tectonics. We estimate global heat flow from 65 Ma to the present using seafloor age reconstructions and a modified half-space cooling model, and we find that heat flow has decreased by approximately 0.15% every million years during the Cenozoic. By examining geometric trends in plate reconstructions since 120 Ma, we show that the reduction in heat flow is due to a decrease in the area of ridge-proximal oceanic crust. Even accounting for uncertainties in plate reconstructions, the rate of heat flow decrease is an order of magnitude faster than estimates based on smooth, parameterized cooling models. This implies that heat flow experiences short-term fluctuations associated with plate tectonic cyclicity. Continental separation does not appear to directly control convective wavelengths, but rather indirectly affects how oceanic plate systems adjust to accommodate global heat transport. Given that today's heat flow may be unusually low, secular cooling rates estimated from present-day values will tend to underestimate the average cooling rate. Thus, a mechanism that causes less efficient tectonic heat transport at higher temperatures may be required to prevent an unreasonably hot mantle in the recent past.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA