Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Immunother Cancer ; 12(10)2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39395839

RESUMO

BACKGROUND: Colorectal cancer (CRC) remains a significant healthcare burden worldwide, characterized by a complex interplay between obesity and chronic inflammation. While the relationship between CRC, obesity and altered lipid metabolism is not fully understood, there are evidences suggesting a link between them. In this study, we hypothesized that dysregulated lipid metabolism contributes to local accumulation of foam cells (FC) in CRC, which in turn disrupts antitumor immunosurveillance. METHODS: Tumor infiltrating FC and CD8+ were quantified by digital pathology in patients affected by T2-T4 CRC with any N stage undergoing radical upfront surgery (n=65) and correlated with patients' clinical outcomes. Multiparametric high-resolution flow cytometry analysis and bulk RNAseq of CRC tissue were conducted to evaluate the phenotype and transcriptomic program of immune cell infiltrate in relation to FC accumulation. The immunosuppressive effects of FC and mechanistic studies on FC-associated transforming growth factor-beta (TGF-ß) and anti-PD-L1 inhibition were explored using an in-vitro human model of lipid-engulfed macrophages. RESULTS: FC (large CD68+ Bodipy+ macrophages) accumulated at the tumor margin in CRC samples. FChigh tumors exhibited reduced CD8+ T cells and increased regulatory T cells (Tregs). Functional transcriptional profiling depicted an immunosuppressed milieu characterized by reduced interferon gamma, memory CD8+ T cells, and activated macrophages mirrored by increased T-cell exhaustion and Treg enrichment. Furthermore, FChigh tumor phenotype was independent of standard clinical factors but correlated with high body mass index (BMI) and plasma saturated fatty acid levels. In CD8low tumors, the FChigh phenotype was associated with a 3-year disease-free survival rate of 8.6% compared with 28.7% of FClow (p=0.001). In-vitro studies demonstrated that FC significantly impact on CD8 proliferation in TFG-ß dependent manner, while inhibition of TGF-ß FC-related factors restored antitumor immunity. CONCLUSIONS: FC exert immunosuppressive activity through a TGF-ß-related pathway, resulting in a CD8-excluded microenvironment and identifying immunosuppressed tumors with worse prognosis in patients with primary CRC. FC association with patient BMI and dyslipidemia might explain the link of CRC with obesity, and offers novel therapeutic and preventive perspectives in this specific clinical setting.


Assuntos
Progressão da Doença , Humanos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Microambiente Tumoral , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Carcinogênese/imunologia
2.
Cell Metab ; 35(4): 633-650.e9, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36898381

RESUMO

The metabolic state represents a major hurdle for an effective adoptive T cell therapy (ACT). Indeed, specific lipids can harm CD8+ T cell (CTL) mitochondrial integrity, leading to defective antitumor responses. However, the extent to which lipids can affect the CTL functions and fate remains unexplored. Here, we show that linoleic acid (LA) is a major positive regulator of CTL activity by improving metabolic fitness, preventing exhaustion, and stimulating a memory-like phenotype with superior effector functions. We report that LA treatment enhances the formation of ER-mitochondria contacts (MERC), which in turn promotes calcium (Ca2+) signaling, mitochondrial energetics, and CTL effector functions. As a direct consequence, the antitumor potency of LA-instructed CD8 T cells is superior in vitro and in vivo. We thus propose LA treatment as an ACT potentiator in tumor therapy.


Assuntos
Linfócitos T CD8-Positivos , Ácido Linoleico , Ácido Linoleico/metabolismo , Transdução de Sinais
3.
Cells ; 11(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36496978

RESUMO

Hyperactivation of the phosphatidylinositol-3-kinase (PI3K) pathway is one of the most common events in human cancers. Several efforts have been made toward the identification of selective PI3K pathway inhibitors. However, the success of these molecules has been partially limited due to unexpected toxicities, the selection of potentially responsive patients, and intrinsic resistance to treatments. Metabolic alterations are intimately linked to drug resistance; altered metabolic pathways can help cancer cells adapt to continuous drug exposure and develop resistant phenotypes. Here we report the metabolic alterations underlying the non-small cell lung cancer (NSCLC) cell lines resistant to the usual PI3K-mTOR inhibitor BEZ235. In this study, we identified that an increased unsaturation degree of lipid species is associated with increased plasma membrane fluidity in cells with the resistant phenotype and that fatty acid desaturase FADS2 mediates the acquisition of chemoresistance. Therefore, new studies focused on reversing drug resistance based on membrane lipid modifications should consider the contribution of desaturase activity.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ácidos Graxos Dessaturases , Neoplasias Pulmonares , Inibidores de MTOR , Inibidores de Fosfoinositídeo-3 Quinase , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Ácidos Graxos Dessaturases/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Inibidores de MTOR/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
4.
PLoS One ; 10(7): e0132696, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26147107

RESUMO

The formation of lipid microdomains ("rafts") is presumed to play an important role in various cellular functions, but their nature remains controversial. Here we report on microdomain formation in isolated, detergent-resistant membranes from MDA-MB-231 human breast cancer cells, studied by atomic force microscopy (AFM). Whereas microdomains were readily observed at room temperature, they shrunk in size and mostly disappeared at higher temperatures. This shrinking in microdomain size was accompanied by a gradual reduction of the height difference between the microdomains and the surrounding membrane, consistent with the behaviour expected for lipids that are laterally segregated in liquid ordered and liquid disordered domains. Immunolabeling experiments demonstrated that the microdomains contained flotillin-1, a protein associated with lipid rafts. The microdomains reversibly dissolved and reappeared, respectively, on heating to and cooling below temperatures around 37 °C, which is indicative of radical changes in local membrane order close to physiological temperature.


Assuntos
Detergentes , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Temperatura , Linhagem Celular Tumoral , Humanos
5.
Eur J Hum Genet ; 22(5): 633-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24045840

RESUMO

The ABCB4 gene encodes for MDR3, a protein that translocates phosphatidylcholine from the inner to the outer leaflet of the hepatocanalicular membrane; its deficiency favors the formation of 'toxic bile'. Several forms of hepatobiliary diseases have been associated with ABCB4 mutations, but the detrimental effects of most mutations on the encoded protein needs to be clarified. Among subjects with cholangiopathies who were screened for mutations in ABCB4 by direct sequencing, we identified the new mutation p.(L481R) in three brothers. According to our model of tertiary structure, this mutation affects the Q-loop, whereas the p.(Y403H) mutation, that we already described in two other families, involves the A-loop. This study was aimed at analyzing the functional relevance of these two ABCB4 mutations: MDR3 expression and lipid content in the culture supernatant were evaluated in cell lines stably transfected with the ABCB4 wild-type clone and corresponding mutants. No differences of expression were observed between wild-type and mutant gene products. Instead, both mutations caused a reduction of phosphatidylcholine secretion compared with the wild-type transfected cell lines. On the contrary, cholesterol (Chol) release, after 1 and 3 mM sodium taurocholate stimulation, was higher in the mutant-transfected cell lines than that in the wild-type and was particularly enhanced in cells transfected with the p.Y403H-construct.In summary, our data show that both mutations do not seem to affect protein expression, but are able to reduce the efflux of phosphatidylcholine associated with increase of Chol, thereby promoting the formation of toxic bile.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membrana Celular/metabolismo , Mutação Puntual , Domínios e Motivos de Interação entre Proteínas/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Adulto , Linhagem Celular , Pré-Escolar , Feminino , Expressão Gênica , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Transfecção
6.
Mol Cancer ; 12: 137, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24225025

RESUMO

BACKGROUND: The activity of P-glycoprotein (Pgp) and multidrug resistance related protein 1 (MRP1), two membrane transporters involved in multidrug resistance of colon cancer, is increased by high amounts of cholesterol in plasma membrane and detergent resistant membranes (DRMs). It has never been investigated whether omega 3 polyunsatured fatty acids (PUFAs), which modulate cholesterol homeostasis in dyslipidemic syndromes and have chemopreventive effects in colon cancer, may affect the response to chemotherapy in multidrug resistant (MDR) tumors. METHODS: We studied the effect of omega 3 PUFAs docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in human chemosensitive colon cancer HT29 cells and in their MDR counterpart, HT29-dx cells. RESULTS: MDR cells, which overexpressed Pgp and MRP1, had a dysregulated cholesterol metabolism, due to the lower expression of ubiquitin E3 ligase Trc8: this produced lower ubiquitination rate of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCoAR), higher cholesterol synthesis, higher cholesterol content in MDR cells. We found that DHA and EPA re-activated Trc8 E3 ligase in MDR cells, restored the ubiquitination rate of HMGCoAR to levels comparable with chemosensitive cells, reduced the cholesterol synthesis and incorporation in DRMs. Omega 3 PUFAs were incorporated in whole lipids as well as in DRMs of MDR cells, and altered the lipid composition of these compartments. They reduced the amount of Pgp and MRP1 contained in DRMs, decreased the transporters activity, restored the antitumor effects of different chemotherapeutic drugs, restored a proper tumor-immune system recognition in response to chemotherapy in MDR cells. CONCLUSIONS: Our work describes a new biochemical effect of omega 3 PUFAs, which can be useful to overcome chemoresistance in MDR colon cancer cells.


Assuntos
Membrana Celular/metabolismo , Colesterol/biossíntese , Neoplasias do Colo/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Hidroximetilglutaril-CoA Redutases/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Ácidos Docosa-Hexaenoicos/metabolismo , Regulação para Baixo , Doxorrubicina/uso terapêutico , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Ácido Eicosapentaenoico/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HT29 , Humanos , Fosforilação , Ubiquitinação
7.
Cell Biochem Biophys ; 64(1): 45-59, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22622660

RESUMO

Epidemiologic and experimental studies suggest that dietary fatty acids influence the development and progression of breast cancer. However, no clear data are present in literature that could demonstrate how n - 3 PUFA can interfere with breast cancer growth. It is suggested that these fatty acids might change the structure of cell membrane, especially of lipid rafts. During this study we treated MCF-7 and MDA-MB-231 cells with AA, EPA, and DHA to assess if they are incorporated in lipid raft phospholipids and are able to change chemical and physical properties of these structures. Our data demonstrate that PUFA and their metabolites are inserted with different yield in cell membrane microdomains and are able to alter fatty acid composition without decreasing the total percentage of saturated fatty acids that characterize these structures. In particular in MDA-MB-231 cells, that displays the highest content of Chol and saturated fatty acids, we observed the lowest incorporation of DHA, probably for sterical reasons; nevertheless DHA was able to decrease Chol and SM content. Moreover, PUFA are incorporated in breast cancer lipid rafts with different specificity for the phospholipid moiety, in particular PUFA are incorporated in PI, PS, and PC phospholipids that may be relevant to the formation of PUFA metabolites (prostaglandins, prostacyclins, leukotrienes, resolvines, and protectines) of phospholipids deriving second messengers and signal transduction activation. The bio-physical changes after n - 3 PUFA incubation have also been highlighted by atomic force microscopy. In particular, for both cell lines the DHA treatment produced a decrease of the lipid rafts in the order of about 20-30 %. It is worth noticing that after DHA incorporation lipid rafts exhibit two different height ranges. In fact, some lipid rafts have a higher height of 6-6.5 nm. In conclusion n - 3 PUFA are able to modify lipid raft biochemical and biophysical features leading to decrease of breast cancer cell proliferation probably through different mechanisms related to acyl chain length and unsaturation. While EPA may contribute to cell apoptosis mainly through decrease of AA concentration in lipid raft phospholipids, DHA may change the biophysical properties of lipid rafts decreasing the content of cholesterol and probably the distribution of key proteins.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Microdomínios da Membrana/química , Microdomínios da Membrana/fisiologia , Apoptose , Ácido Araquidônico/farmacologia , Neoplasias da Mama/química , Proliferação de Células/efeitos dos fármacos , Colesterol/química , Feminino , Humanos , Células MCF-7 , Microdomínios da Membrana/efeitos dos fármacos , Microscopia de Força Atômica , Fosfolipídeos/química , Esfingomielinas/química
8.
Lipids Health Dis ; 10: 73, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21569413

RESUMO

BACKGROUND: PUFAs are important molecules for membrane order and function; they can modify inflammation-inducible cytokines production, eicosanoid production, plasma triacylglycerol synthesis and gene expression. Recent studies suggest that n-3 PUFAs can be cancer chemopreventive, chemosuppressive and auxiliary agents for cancer therapy. N-3 PUFAs could alter cancer growth influencing cell replication, cell cycle, and cell death. The question that remains to be answered is how n-3 PUFAs can affect so many physiological processes. We hypothesize that n-3 PUFAs alter membrane stability, modifying cellular signalling in breast cancer cells. METHODS: Two lines of human breast cancer cells characterized by different expression of ER and EGFR receptors were treated with AA, EPA or DHA. We have used the MTT viability test and expression of apoptotic markers to evaluate the effect of PUFAs on cancer growth. Phospholipids were analysed by HPLC/GC, to assess n-3 incorporation into the cell membrane. RESULTS: We have observed that EPA and DHA induce cell apoptosis, a reduction of cell viability and the expression of Bcl2 and procaspase-8. Moreover, DHA slightly reduces the concentration of EGFR but EPA has no effect. Both EPA and DHA reduce the activation of EGFR.N-3 fatty acids are partially metabolized in both cell lines; AA is integrated without being further metabolized. We have analysed the fatty acid pattern in membrane phospholipids where they are incorporated with different degrees of specificity. N-3 PUFAs influence the n-6 content and vice versa. CONCLUSIONS: Our results indicate that n-3 PUFA feeding might induce modifications of breast cancer membrane structure that increases the degree of fatty acid unsaturation. This paper underlines the importance of nutritional factors on health maintenance and on disease prevention.


Assuntos
Neoplasias da Mama/patologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/enzimologia , Caspase 8/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , Feminino , Humanos , Fosfolipídeos/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA