Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Yeast ; 36(12): 701-710, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31389616

RESUMO

Within the field of protein-based biomaterials, the need exists for both covalent and oriented bioconjugation strategies for improved performance. Such bioconjugation reactions can be facilitated by engineering proteins with chemically activated amino acids at strategically chosen sites. The incorporation of these unnatural amino acids (uAAs) can be achieved by using the nonsense suppression technique. This requires an aminoacyl-tRNA-synthetase (aaRS) that exclusively recognizes the uAA and loads it to the corresponding tRNA. Appropriate (aaRS) mutants can be found through reverse engineering using the Saccharomyces cerevisiae strain MaV203. This strain contains a counterselectable, Gal4p-inducible SPAL10::URA3 fusion and deletions in the endogenous GAL80 and GAL4 genes. Therefore, it has been used extensively for the screening of aaRS mutant libraries. It is generally assumed that the SPAL10 promoter actively represses the URA3 gene in the absence of Gal4p, resulting in MaV203 cells with a Ura- phenotype. The current contribution reveals that in a small fraction of MaV203 cells, a basal expression of the URA3 gene occurs. The unexpected URA3 expression is reported for the first time, and the nature of the mutation causing this expression was identified as a spontaneous recessive mutation in a single gene of a protein involved in the repression of the SPAL10 promoter. The basal URA3 expression causes aaRS mutants to be missed, which affects the outcome of the library screening. It is demonstrated that the use of diploid cells can circumvent the MaV203 Ura+ phenotype, allowing for an optimization of S. cerevisiae library screening.


Assuntos
Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Supressão Genética , Aminoacil-tRNA Sintetases/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Biblioteca Gênica , Genes Recessivos , Regiões Promotoras Genéticas , Engenharia de Proteínas , RNA de Transferência/genética , Proteínas Repressoras/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
2.
J Phys Chem A ; 121(6): 1182-1188, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28094940

RESUMO

Determining the mechanism of charge transport through native DNA remains a challenge as different factors such as measuring conditions, molecule conformations, and choice of technique can significantly affect the final results. In this contribution, we have used a new approach to measure current flowing through isolated double-stranded DNA molecules, using fullerene groups to anchor the DNA to a gold substrate. Measurements were performed at room temperature in an inert environment using a conductive AFM technique. It is shown that the π-stacked B-DNA structure is conserved on depositing the DNA. As a result, currents in the nanoampere range were obtained for voltages ranging between ±1 V. These experimental results are supported by a theoretical model that suggests that a multistep hopping mechanism between delocalized domains is responsible for the long-range current flow through this specific type of DNA.


Assuntos
DNA de Forma B/química , Fulerenos/química , Condutividade Elétrica , Modelos Químicos , Nanofios/química , Conformação de Ácido Nucleico
3.
Bioconjug Chem ; 24(11): 1761-77, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24160176

RESUMO

Much effort has been put into the optimization of the functional activity of proteins. For biosensors this protein functional optimization will increase the biosensor's sensitivity and/or selectivity. However, the strategy chosen for the immobilization of the proteins to the sensor surface might be equally important for the development of sensor surfaces that are optimally biologically active. Several studies published in recent years show that the oriented immobilization of the bioactive molecules improves the sensor's properties. In this review, we discuss the state of the art of the different protein immobilization strategies that are commonly used today with a special focus on biosensor applications. These strategies include nonspecific immobilization techniques either by physical adsorption, by covalent coupling, or by specific immobilization via site-specifically introduced tags or bio-orthogonal chemistry. The different tags and bio-orthogonal chemistry available and the techniques to site-specifically introduce these groups in proteins are also discussed.


Assuntos
Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Engenharia de Proteínas , Animais , Técnicas Biossensoriais/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA