Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38405696

RESUMO

Victims of a radiation terrorist event will include pregnant women and unborn fetuses. Mitochondrial dysfunction and oxidative stress are key pathogenic factors of fetal irradiation injury. The goal of this preclinical study is to investigate the efficacy of mitigating fetal irradiation injury by maternal administration of the mitochondrial-targeted gramicidin S (GS)- nitroxide radiation mitigator, JP4-039. Pregnant female C57BL/6NTac mice received 3 Gy total body ionizing irradiation (TBI) at mid-gestation embryonic day 13.5 (E13.5). Using novel time- and-motion-resolved 4D in utero magnetic resonance imaging (4D-uMRI), we found TBI caused extensive injury to the fetal brain that included cerebral hemorrhage, loss of cerebral tissue, and hydrocephalus with excessive accumulation of cerebrospinal fluid (CSF). Histopathology of the fetal mouse brain showed broken cerebral vessels and elevated apoptosis. Further use of novel 4D Oxy-wavelet MRI capable of probing in vivo mitochondrial function in intact brain revealed significant reduction of mitochondrial function in the fetal brain after 3Gy TBI. This was validated by ex vivo Oroboros mitochondrial respirometry. Maternal administration JP4-039 one day after TBI (E14.5), which can pass through the placental barrier, significantly reduced fetal brain radiation injury and improved fetal brain mitochondrial respiration. This also preserved cerebral brain tissue integrity and reduced cerebral hemorrhage and cell death. As JP4-039 administration did not change litter sizes or fetus viability, together these findings indicate JP4-039 can be deployed as a safe and effective mitigator of fetal radiation injury from mid-gestational in utero ionizing radiation exposure. One Sentence Summary: Mitochondrial-targeted gramicidin S (GS)-nitroxide JP4-039 is safe and effective radiation mitigator for mid-gestational fetal irradiation injury.

2.
bioRxiv ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38352563

RESUMO

The placenta is a transient organ critical for fetal development. Disruptions of normal placental functions can impact health throughout an individual's entire life. Although being recognized by the NIH Human Placenta Project as an important organ, the placenta remains understudied, partly because of a lack of non-invasive tools for longitudinally evaluation for key aspects of placental functionalities. Non-invasive imaging that can longitudinally probe murine placental health in vivo are critical to understanding placental development throughout pregnancy. We developed advanced imaging processing schemes to establish functional biomarkers for non-invasive longitudinal evaluation of placental development. We developed a dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) pipeline combined with advanced image process methods to model uterine contraction and placental perfusion dynamics. Our novel imaging pipeline uses subcutaneous administration of gadolinium for steepest-slope based perfusion evaluation. This enables non-invasive longitudinal monitoring. Additionally, we advance the placental perfusion chamber paradigm with a novel physiologically-based threshold model for chamber localization and demonstrate spatially varying placental chambers using multiple functional metrics that assess mouse placental development and continuing remodeling throughout gestation. Lastly, using optic flow to quantify placental motions arisen from uterine contractions in conjunction with time-frequency analysis, we demonstrated that the placenta exhibited asymmetric contractile motion.

3.
Front Neurosci ; 17: 1183312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075287

RESUMO

Late-onset Alzheimer's disease (LOAD) is a major health concern for senior citizens, characterized by memory loss, confusion, and impaired cognitive abilities. Apolipoprotein-E (ApoE) is a well-known risk factor for LOAD, though exactly how ApoE affects LOAD risks is unknown. We hypothesize that ApoE attenuation of LOAD resiliency or vulnerability has a neurodevelopmental origin via changing brain network architecture. We investigated the brain network structure in adult ApoE knock out (ApoE KO) and wild-type (WT) mice with diffusion tensor imaging (DTI) followed by graph theory to delineate brain network topology. Left and right hemisphere connectivity revealed significant differences in number of connections between the hippocampus, amygdala, caudate putamen and other brain regions. Network topology based on the graph theory of ApoE KO demonstrated decreased functional integration, network efficiency, and network segregation between the hippocampus and amygdala and the rest of the brain, compared to those in WT counterparts. Our data show that brain network developed differently in ApoE KO and WT mice at 5 months of age, especially in the network reflected in the hippocampus, amygdala, and caudate putamen. This indicates that ApoE is involved in brain network development which might modulate LOAD risks via changing brain network structures.

4.
Tissue Eng Part A ; 28(23-24): 941-957, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36039923

RESUMO

Skeletal muscle has a robust, inherent ability to regenerate in response to injury from acute to chronic. In severe trauma, however, complete regeneration is not possible, resulting in a permanent loss of skeletal muscle tissue referred to as volumetric muscle loss (VML). There are few consistently reliable therapeutic or surgical options to address VML. A major limitation in investigation of possible therapies is the absence of a well-characterized large animal model. In this study, we present results of a comprehensive transcriptomic, proteomic, and morphologic characterization of wound healing following VML in a novel canine model of VML which we compare to a nine-patient cohort of combat-associated VML. The canine model is translationally relevant as it provides both a regional (spatial) and temporal map of the wound healing processes that occur in human VML. Collectively, these data show the spatiotemporal transcriptomic, proteomic, and morphologic properties of canine VML healing as a framework and model system applicable to future studies investigating novel therapies for human VML. Impact Statement The spatiotemporal transcriptomic, proteomic, and morphologic properties of canine volumetric muscle loss (VML) healing is a translational framework and model system applicable to future studies investigating novel therapies for human VML.


Assuntos
Doenças Musculares , Transcriptoma , Cães , Animais , Humanos , Transcriptoma/genética , Proteômica , Regeneração/fisiologia , Cicatrização/genética , Músculo Esquelético/lesões , Doenças Musculares/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA