Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Exp Bot ; 73(5): 1499-1515, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34849721

RESUMO

Cell wall modifications are of pivotal importance during plant development. Among cell wall components, xyloglucans are the major hemicellulose polysaccharide in primary cell walls of dicots and non-graminaceous monocots. They can connect the cellulose microfibril surface to affect cell wall mechanical properties. Changes in xyloglucan structure are known to play an important role in regulating cell growth. Therefore, the degradation of xyloglucan is an important modification that alters the cell wall. The α-XYLOSIDASE1 (XYL1) gene encodes the only α-xylosidase acting on xyloglucans in Arabidopsis thaliana. Here, we showed that mutation of XYL1 strongly influences seed size, seed germination, and fruit elongation. We found that the expression of XYL1 is directly regulated in developing seeds and fruit by the MADS-box transcription factor SEEDSTICK. We demonstrated that XYL1 complements the stk smaller seed phenotype. Finally, by atomic force microscopy, we investigated the role of XYL1 activity in maintaining cell stiffness and growth, confirming the importance of cell wall modulation in shaping organs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Frutas/genética , Frutas/metabolismo , Sementes
3.
Nat Commun ; 11(1): 5938, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230096

RESUMO

Recurrent somatic mutations in ETNK1 (Ethanolamine-Kinase-1) were identified in several myeloid malignancies and are responsible for a reduced enzymatic activity. Here, we demonstrate in primary leukemic cells and in cell lines that mutated ETNK1 causes a significant increase in mitochondrial activity, ROS production, and Histone H2AX phosphorylation, ultimately driving the increased accumulation of new mutations. We also show that phosphoethanolamine, the metabolic product of ETNK1, negatively controls mitochondrial activity through a direct competition with succinate at mitochondrial complex II. Hence, reduced intracellular phosphoethanolamine causes mitochondria hyperactivation, ROS production, and DNA damage. Treatment with phosphoethanolamine is able to counteract complex II hyperactivation and to restore a normal phenotype.


Assuntos
Etanolaminas/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Respiração Celular/genética , Quebras de DNA/efeitos dos fármacos , Complexo II de Transporte de Elétrons/efeitos dos fármacos , Complexo II de Transporte de Elétrons/metabolismo , Etanolaminas/metabolismo , Humanos , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Mitocôndrias/genética , Mitocôndrias/patologia , Mutação , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Succínico/metabolismo , Tigeciclina/farmacologia
4.
Sci Rep ; 10(1): 18069, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093484

RESUMO

Single-molecule experiments usually take place in flow cells. This experimental approach is essential for experiments requiring a liquid environment, but is also useful to allow the exchange of reagents before or during measurements. This is crucial in experiments that need to be triggered by ligands or require a sequential addition of proteins. Home-fabricated flow cells using two glass coverslips and a gasket made of paraffin wax are a widespread approach. The volume of the flow cell can be controlled by modifying the dimensions of the channel while the reagents are introduced using a syringe pump. In this system, high flow rates disturb the biological system, whereas lower flow rates lead to the generation of a reagent gradient in the flow cell. For very precise measurements it is thus desirable to have a very fast exchange of reagents with minimal diffusion. We propose the implementation of multistream laminar microfluidic cells with two inlets and one outlet, which achieve a minimum fluid switching time of 0.25 s. We additionally define a phenomenological expression to predict the boundary switching time for a particular flow cell cross section. Finally, we study the potential applicability of the platform to study kinetics at the single molecule level.

5.
Int J Mol Sci ; 21(3)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033502

RESUMO

The deposition of amyloid-ß (Aß) plaques in the brain is a significant pathological signature of Alzheimer's disease, correlating with synaptic dysfunction and neurodegeneration. Several compounds, peptides, or drugs have been designed to redirect or stop Aß aggregation. Among them, the trideca-peptide CWG-LRKLRKRLLR (mApoE), which is derived from the receptor binding sequence of apolipoprotein E, is effectively able to inhibit Aß aggregation and to promote fibril disaggregation. Taking advantage of Atomic Force Microscopy (AFM) imaging and fluorescence techniques, we investigate if the clustering of mApoE on gold nanoparticles (AuNP) surface may affect its performance in controlling Aß aggregation/disaggregation processes. The results showed that the ability of free mApoE to destroy preformed Aß fibrils or to hinder the Aß aggregation process is preserved after its clustering on AuNP. This allows the possibility to design multifunctional drug delivery systems with clustering of anti-amyloidogenic molecules on any NP surface without affecting their performance in controlling Aß aggregation processes.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/metabolismo , Nanopartículas Metálicas/química , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Encéfalo/metabolismo , Análise por Conglomerados , Ouro/química , Humanos , Placa Amiloide/metabolismo , Ligação Proteica/fisiologia
6.
Int J Mol Sci ; 20(20)2019 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-31635031

RESUMO

Description of heterogeneous molecular ensembles, such as intrinsically disordered proteins, represents a challenge in structural biology and an urgent question posed by biochemistry to interpret many physiologically important, regulatory mechanisms. Single-molecule techniques can provide a unique contribution to this field. This work applies single molecule force spectroscopy to probe conformational properties of α-synuclein in solution and its conformational changes induced by ligand binding. The goal is to compare data from such an approach with those obtained by native mass spectrometry. These two orthogonal, biophysical methods are found to deliver a complex picture, in which monomeric α-synuclein in solution spontaneously populates compact and partially compacted states, which are differently stabilized by binding to aggregation inhibitors, such as dopamine and epigallocatechin-3-gallate. Analyses by circular dichroism and Fourier-transform infrared spectroscopy show that these transitions do not involve formation of secondary structure. This comparative analysis provides support to structural interpretation of charge-state distributions obtained by native mass spectrometry and helps, in turn, defining the conformational components detected by single molecule force spectroscopy.


Assuntos
Espectrometria de Massas , Conformação Proteica , Imagem Individual de Molécula , alfa-Sinucleína/química , Dicroísmo Circular , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , alfa-Sinucleína/metabolismo
7.
Front Neurosci ; 13: 419, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156358

RESUMO

Much evidence suggests a protective role of high-density lipoprotein (HDL) and its major apolipoprotein apoA-I, in Alzheimer's disease (AD). The biogenesis of nascent HDL derived from a first lipidation of apoA-I, which is synthesized by the liver and intestine but not in the brain, in a process mediated by ABCA1. The maturation of nascent HDL in mature spherical HDL is due to a subsequent lipidation step, LCAT-mediated cholesterol esterification, and the change of apoA-I conformation. Therefore, different subclasses of apoA-I-HDL simultaneously exist in the blood circulation. Here, we investigated if and how the lipidation state affects the ability of apoA-I-HDL to target and modulate the cerebral ß-amyloid (Aß) content from the periphery, that is thus far unclear. In particular, different subclasses of HDL, each with different apoA-I lipidation state, were purified from human plasma and their ability to cross the blood-brain barrier (BBB), to interact with Aß aggregates, and to affect Aß efflux across the BBB was assessed in vitro using a transwell system. The results showed that discoidal HDL displayed a superior capability to promote Aß efflux in vitro (9 × 10-5 cm/min), when compared to apoA-I in other lipidation states. In particular, no effect on Aß efflux was detected when apoA-I was in mature spherical HDL, suggesting that apoA-I conformation, and lipidation could play a role in Aß clearance from the brain. Finally, when apoA-I folded its structure in discoidal HDL, rather than in spherical ones, it was able to cross the BBB in vitro and strongly destabilize the conformation of Aß fibrils by decreasing the order of the fibril structure (-24%) and the ß-sheet content (-14%). These data suggest that the extent of apoA-I lipidation, and consequently its conformation, may represent crucial features that could exert their protective role in AD pathogenesis.

8.
Int J Mol Sci ; 20(7)2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970594

RESUMO

The cell microenvironment plays a pivotal role in mediating cell adhesion, survival, and proliferation in physiological and pathological states. The relevance of extracellular matrix (ECM) proteins in cell fate control is an important issue to take into consideration for both tissue engineering and cell biology studies. The glycosylation of ECM proteins remains, however, largely unexplored. In order to investigate the physio-pathological effects of differential ECM glycosylation, the design of affordable chemoselective methods for ECM components glycosylation is desirable. We will describe a new chemoselective glycosylation approach exploitable in aqueous media and on non-protected substrates, allowing rapid access to glyco-functionalized biomaterials.


Assuntos
Materiais Biocompatíveis/metabolismo , Técnicas de Cultura de Células/métodos , Proteínas da Matriz Extracelular/metabolismo , Materiais Biocompatíveis/química , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Colágeno/química , Colágeno/farmacologia , Glicosilação , Humanos
9.
Biol Open ; 8(3)2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30837227

RESUMO

The fibrotic tissue and the stroma adjacent to cancer cells are characterised by the presence of activated fibroblasts (myofibroblasts) which play a role in creating a supportive tissue characterised by abundant extracellular matrix (ECM) secretion. The myofibroblasts remodel this tissue through secreted molecules and modulation of their cytoskeleton and specialized contractile structures. The non-receptor protein tyrosine kinase Arg (also called Abl2) has the unique ability to bind directly to the actin cytoskeleton, transducing diverse extracellular signals into cytoskeletal rearrangements. In this study we analysed the 1ALCTL and 1BLCTL Arg isoforms in Arg-/- murine embryonal fibroblasts (MEF) cell line, focusing on their capacity to activate fibroblasts and to remodel ECM. The results obtained showed that Arg isoform 1BLCTL has a major role in proliferation, migration/invasion of MEF and in inducing a milieu able to modulate tumour cell morphology, while 1ALCTL isoform has a role in MEF adhesion maintaining active focal adhesions. On the whole, the presence of Arg in MEF supports the proliferation, activation, adhesion, ECM contraction and stiffness, while the absence of Arg affected these myofibroblast features.This article has an associated First Person interview with the first author of the paper.

10.
Biophys J ; 116(5): 760-771, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30795872

RESUMO

2,6-diaminopurine (DAP) is a nucleobase analog of adenine. When incorporated into double-stranded DNA (dsDNA), it forms three hydrogen bonds with thymine. Rare in nature, DAP substitution alters the physical characteristics of a DNA molecule without sacrificing sequence specificity. Here, we show that in addition to stabilizing double-strand hybridization, DAP substitution also changes the mechanical and conformational properties of dsDNA. Thermal melting experiments reveal that DAP substitution raises melting temperatures without diminishing sequence-dependent effects. Using a combination of atomic force microscopy (AFM), magnetic tweezer (MT) nanomechanical assays, and circular dichroism spectroscopy, we demonstrate that DAP substitution increases the flexural rigidity of dsDNA yet also facilitates conformational shifts, which manifest as changes in molecule length. DAP substitution increases both the static and dynamic persistence length of DNA (measured by AFM and MT, respectively). In the static case (AFM), in which tension is not applied to the molecule, the contour length of DAP-DNA appears shorter than wild-type (WT)-DNA; under tension (MT), they have similar dynamic contour lengths. At tensions above 60 pN, WT-DNA undergoes characteristic overstretching because of strand separation (tension-induced melting) and spontaneous adoption of a conformation termed S-DNA. Cyclic overstretching and relaxation of WT-DNA at near-zero loading rates typically yields hysteresis, indicative of tension-induced melting; conversely, cyclic stretching of DAP-DNA showed little or no hysteresis, consistent with the adoption of the S-form, similar to what has been reported for GC-rich sequences. However, DAP-DNA overstretching is distinct from GC-rich overstretching in that it happens at a significantly lower tension. In physiological salt conditions, evenly mixed AT/GC DNA typically overstretches around 60 pN. GC-rich sequences overstretch at similar if not slightly higher tensions. Here, we show that DAP-DNA overstretches at 52 pN. In summary, DAP substitution decreases the overall stability of the B-form double helix, biasing toward non-B-form DNA helix conformations at zero tension and facilitating the B-to-S transition at high tension.


Assuntos
2-Aminopurina/análogos & derivados , DNA/química , Fenômenos Mecânicos , 2-Aminopurina/química , Fenômenos Biomecânicos , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Temperatura de Transição
11.
Am J Pathol ; 186(9): 2473-85, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27449199

RESUMO

Human clear cell renal cell carcinoma (ccRCC) is therapy resistant; therefore, it is worthwhile studying in depth the molecular aspects of its progression. In ccRCC the biallelic inactivation of the VHL gene leads to stabilization of hypoxia-inducible factors (HIFs). Among the targets of HIF-1α transcriptional activity is the LOX gene, which codes for the inactive proenzyme (Pro-Lox) from which, after extracellular secretion and proteolysis, derives the active enzyme (Lox) and the propeptide (Lox-PP). By increasing stiffness of extracellular matrix by collagen crosslinking, Lox promotes tumor progression and metastasis. Lox and Lox-PP can reenter the cells where Lox promotes cell proliferation and invasion, whereas Lox-PP acts as tumor suppressor because of its Ras recision and apoptotic activity. Few data are available concerning LOX in ccRCC. Using an in vitro model of ccRCC primary cell cultures, we performed, for the first time in ccRCC, a detailed study of endogenous LOX and also investigated their transcriptomic profile. We found that endogenous LOX is overexpressed in ccRCC, is involved in a positive-regulative loop with HIF-1α, and has a major action on ccRCC progression through cellular adhesion, migration, and collagen matrix stiffness increment; however, the oncosuppressive action of Lox-PP was not found to prevail. These findings may suggest translational approaches for new therapeutic strategies in ccRCC.


Assuntos
Carcinoma de Células Renais/patologia , Colágeno/metabolismo , Neoplasias Renais/patologia , Proteína-Lisina 6-Oxidase/metabolismo , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Carcinoma de Células Renais/enzimologia , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Progressão da Doença , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Neoplasias Renais/enzimologia , Masculino , Microscopia de Força Atômica , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Cultura Primária de Células , Reação em Cadeia da Polimerase em Tempo Real , Transfecção , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA