RESUMO
BACKGROUND: Treatment with immune checkpoint inhibitors (ICIs) targeting programmed death-1 (PD-1) can yield durable antitumor responses, yet not all patients respond to ICIs. Current approaches to select patients who may benefit from anti-PD-1 treatment are insufficient. 5-hydroxymethylation (5hmC) analysis of plasma-derived cell-free DNA (cfDNA) presents a novel non-invasive approach for identification of therapy response biomarkers which can tackle challenges associated with tumor biopsies such as tumor heterogeneity and serial sample collection. METHODS: 151 blood samples were collected from 31 patients with non-small cell lung cancer (NSCLC) before therapy started and at multiple time points while on therapy. Blood samples were processed to obtain plasma-derived cfDNA, followed by enrichment of 5hmC-containing cfDNA fragments through biotinylation via a two-step chemistry and binding to streptavidin coated beads. 5hmC-enriched cfDNA and whole genome libraries were prepared in parallel and sequenced to obtain whole hydroxymethylome and whole genome plasma profiles, respectively. RESULTS: Comparison of on-treatment time point to matched pretreatment samples from same patients revealed that anti-PD-1 treatment induced distinct changes in plasma cfDNA 5hmC profiles of responding patients, as judged by Response evaluation criteria in solid tumors, relative to non-responders. In responders, 5hmC accumulated over genes involved in immune activation such as inteferon (IFN)-γ and IFN-α response, inflammatory response and tumor necrosis factor (TNF)-α signaling, whereas in non-responders 5hmC increased over epithelial to mesenchymal transition genes. Molecular response to anti-PD-1 treatment, as measured by 5hmC changes in plasma cfDNA profiles were observed early on, starting with the first cycle of treatment. Comparison of pretreatment plasma samples revealed that anti-PD-1 treatment response and resistance associated genes can be captured by 5hmC profiling of plasma-derived cfDNA. Furthermore, 5hmC profiling of pretreatment plasma samples was able to distinguish responders from non-responders using T cell-inflamed gene expression profile, which was previously identified by tissue RNA analysis. CONCLUSIONS: These results demonstrate that 5hmC profiling can identify response and resistance associated biological pathways in plasma-derived cfDNA, offering a novel approach for non-invasive prediction and monitoring of immunotherapy response in NSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ácidos Nucleicos Livres , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Transição Epitelial-Mesenquimal , BiologiaRESUMO
Oncogene amplification is a major driver of cancer pathogenesis. Breakage fusion bridge (BFB) cycles, like extrachromosomal DNA (ecDNA), can lead to high copy numbers of oncogenes, but their impact on intratumoral heterogeneity, treatment response, and patient survival are not well understood due to difficulty in detecting them by DNA sequencing. We describe a novel algorithm that detects and reconstructs BFB amplifications using optical genome maps (OGMs), called OM2BFB. OM2BFB showed high precision (>93%) and recall (92%) in detecting BFB amplifications in cancer cell lines, PDX models and primary tumors. OM-based comparisons demonstrated that short-read BFB detection using our AmpliconSuite (AS) toolkit also achieved high precision, albeit with reduced sensitivity. We detected 371 BFB events using whole genome sequences from 2,557 primary tumors and cancer lines. BFB amplifications were preferentially found in cervical, head and neck, lung, and esophageal cancers, but rarely in brain cancers. BFB amplified genes show lower variance of gene expression, with fewer options for regulatory rewiring relative to ecDNA amplified genes. BFB positive (BFB (+)) tumors showed reduced heterogeneity of amplicon structures, and delayed onset of resistance, relative to ecDNA(+) tumors. EcDNA and BFB amplifications represent contrasting mechanisms to increase the copy numbers of oncogene with markedly different characteristics that suggest different routes for intervention.
RESUMO
Eukaryotes must balance the need for gene transcription by RNA polymerase II (Pol II) against the danger of mutations caused by transposable element (TE) proliferation. In plants, these gene expression and TE silencing activities are divided between different RNA polymerases. Specifically, RNA polymerase IV (Pol IV), which evolved from Pol II, transcribes TEs to generate small interfering RNAs (siRNAs) that guide DNA methylation and block TE transcription by Pol II. While the Pol IV complex is recruited to TEs via SNF2-like CLASSY (CLSY) proteins, how Pol IV partners with the CLSYs remains unknown. Here we identified a conserved CYC-YPMF motif that is specific to Pol IV and is positioned on the complex exterior. Furthermore, we found that this motif is essential for the co-purification of all four CLSYs with Pol IV, but that only one CLSY is present in any given Pol IV complex. These findings support a "one CLSY per Pol IV" model where the CYC-YPMF motif acts as a CLSY-docking site. Indeed, mutations in and around this motif phenocopy pol iv null mutants. Together, these findings provide structural and functional insights into a critical protein feature that distinguishes Pol IV from other RNA polymerases, allowing it to promote genome stability by targeting TEs for silencing.
RESUMO
Extrachromosomal DNA (ecDNA) is a common mode of oncogene amplification but is challenging to analyze. Here, we adapt CRISPR-CATCH, in vitro CRISPR-Cas9 treatment and pulsed field gel electrophoresis of agarose-entrapped genomic DNA, previously developed for bacterial chromosome segments, to isolate megabase-sized human ecDNAs. We demonstrate strong enrichment of ecDNA molecules containing EGFR, FGFR2 and MYC from human cancer cells and NRAS ecDNA from human metastatic melanoma with acquired therapeutic resistance. Targeted enrichment of ecDNA versus chromosomal DNA enabled phasing of genetic variants, identified the presence of an EGFRvIII mutation exclusively on ecDNAs and supported an excision model of ecDNA genesis in a glioblastoma model. CRISPR-CATCH followed by nanopore sequencing enabled single-molecule ecDNA methylation profiling and revealed hypomethylation of the EGFR promoter on ecDNAs. We distinguished heterogeneous ecDNA species within the same sample by size and sequence with base-pair resolution and discovered functionally specialized ecDNAs that amplify select enhancers or oncogene-coding sequences.
Assuntos
Glioblastoma , Neoplasias , Humanos , Oncogenes , DNA/genética , Neoplasias/genética , Neoplasias/patologia , Glioblastoma/genética , Receptores ErbB/genéticaRESUMO
DNA methylation, specifically, methylation of cytosine (C) nucleotides at the 5-carbon position (5-mC), is the most studied and significant epigenetic modification. Here we developed a chemoenzymatic procedure to fluorescently label non-methylated cytosines in CpG context, allowing epigenetic profiling of single DNA molecules spanning hundreds of thousands of base pairs. We used a CpG methyltransferase with a synthetic S-adenosyl-l-methionine cofactor analog to transfer an azide to cytosines instead of the natural methyl group. A fluorophore was then clicked onto the DNA, reporting on the amount and position of non-methylated CpGs. We found that labeling efficiency was increased up to 2-fold by the addition of a nucleosidase, presumably by degrading the inactive by-product of the cofactor after labeling, preventing its inhibitory effect. We used the method to determine the decline in global DNA methylation in a chronic lymphocytic leukemia patient and then performed whole-genome methylation mapping of the model plant Arabidopsis thaliana. Our genome maps show high concordance with published bisulfite sequencing methylation maps. Although mapping resolution is limited by optical detection to 500-1000 bp, the labeled DNA molecules produced by this approach are hundreds of thousands of base pairs long, allowing access to long repetitive and structurally variable genomic regions.
Assuntos
Arabidopsis , Metilação de DNA , Arabidopsis/genética , Arabidopsis/metabolismo , Ilhas de CpG/genética , Citosina , DNA/genética , DNA/metabolismo , Epigênese Genética , Epigenômica , Humanos , Análise de Sequência de DNA/métodos , SulfitosRESUMO
DNA methylation shapes the epigenetic landscape of the genome, plays critical roles in regulating gene expression, and ensures transposon silencing. As is evidenced by the numerous defects associated with aberrant DNA methylation landscapes, establishing proper tissue-specific methylation patterns is critical. Yet, how such differences arise remains a largely open question in both plants and animals. Here we demonstrate that CLASSY1-4 (CLSY1-4), four locus-specific regulators of DNA methylation, also control tissue-specific methylation patterns, with the most striking pattern observed in ovules where CLSY3 and CLSY4 control DNA methylation at loci with a highly conserved DNA motif. On a more global scale, we demonstrate that specific clsy mutants are sufficient to shift the epigenetic landscape between tissues. Together, these findings reveal substantial epigenetic diversity between tissues and assign these changes to specific CLSY proteins, elucidating how locus-specific targeting combined with tissue-specific expression enables the CLSYs to generate epigenetic diversity during plant development.
Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Metilação de DNA , Animais , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , DNA de Plantas/genética , Epigênese Genética , Inativação Gênica , Genoma de Planta , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Plantas/metabolismo , RNA Interferente PequenoRESUMO
Oncogene amplification, a major driver of cancer pathogenicity, is often mediated through focal amplification of genomic segments. Recent results implicate extrachromosomal DNA (ecDNA) as the primary driver of focal copy number amplification (fCNA) - enabling gene amplification, rapid tumor evolution, and the rewiring of regulatory circuitry. Resolving an fCNA's structure is a first step in deciphering the mechanisms of its genesis and the fCNA's subsequent biological consequences. We introduce a computational method, AmpliconReconstructor (AR), for integrating optical mapping (OM) of long DNA fragments (>150 kb) with next-generation sequencing (NGS) to resolve fCNAs at single-nucleotide resolution. AR uses an NGS-derived breakpoint graph alongside OM scaffolds to produce high-fidelity reconstructions. After validating its performance through multiple simulation strategies, AR reconstructed fCNAs in seven cancer cell lines to reveal the complex architecture of ecDNA, a breakage-fusion-bridge and other complex rearrangements. By reconstructing the rearrangement signatures associated with an fCNA's generative mechanism, AR enables a more thorough understanding of the origins of fCNAs.
Assuntos
Amplificação de Genes , Genômica/métodos , Neoplasias/genética , Oncogenes/genética , Linhagem Celular Tumoral , Mapeamento Cromossômico/métodos , Análise Citogenética , Genoma Humano/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , HumanosRESUMO
Plant endogenous small RNAs (sRNAs) are important regulators of gene expression. There are two broad categories of plant sRNAs: microRNAs (miRNAs) and endogenous short interfering RNAs (siRNAs). MicroRNA loci are relatively well-annotated but compose only a small minority of the total sRNA pool; siRNA locus annotations have lagged far behind. Here, we used a large data set of published and newly generated sRNA sequencing data (1333 sRNA-seq libraries containing more than 20 billion reads) and a uniform bioinformatic pipeline to produce comprehensive sRNA locus annotations of 47 diverse plants, yielding more than 2.7 million sRNA loci. The two most numerous classes of siRNA loci produced mainly 24- and 21-nucleotide (nt) siRNAs, respectively. Most often, 24-nt-dominated siRNA loci occurred in intergenic regions, especially at the 5'-flanking regions of protein-coding genes. In contrast, 21-nt-dominated siRNA loci were most often derived from double-stranded RNA precursors copied from spliced mRNAs. Genic 21-nt-dominated loci were especially common from disease resistance genes, including from a large number of monocots. Individual siRNA sequences of all types showed very little conservation across species, whereas mature miRNAs were more likely to be conserved. We developed a web server where our data and several search and analysis tools are freely accessible.
Assuntos
MicroRNAs/genética , Plantas/genética , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Cromossomos de Plantas , Bases de Dados de Ácidos Nucleicos , Resistência à Doença/genética , Éxons , Loci Gênicos , Íntrons , Anotação de Sequência Molecular , Proteínas de Plantas/genética , SoftwareRESUMO
Oncogenes are commonly amplified on particles of extrachromosomal DNA (ecDNA) in cancer1,2, but our understanding of the structure of ecDNA and its effect on gene regulation is limited. Here, by integrating ultrastructural imaging, long-range optical mapping and computational analysis of whole-genome sequencing, we demonstrate the structure of circular ecDNA. Pan-cancer analyses reveal that oncogenes encoded on ecDNA are among the most highly expressed genes in the transcriptome of the tumours, linking increased copy number with high transcription levels. Quantitative assessment of the chromatin state reveals that although ecDNA is packaged into chromatin with intact domain structure, it lacks higher-order compaction that is typical of chromosomes and displays significantly enhanced chromatin accessibility. Furthermore, ecDNA is shown to have a significantly greater number of ultra-long-range interactions with active chromatin, which provides insight into how the structure of circular ecDNA affects oncogene function, and connects ecDNA biology with modern cancer genomics and epigenetics.
Assuntos
Cromatina/genética , DNA Circular/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias/genética , Oncogenes/genética , Linhagem Celular Tumoral , Cromatina/química , DNA Circular/genética , Humanos , Microscopia Eletrônica de Varredura , Neoplasias/fisiopatologiaRESUMO
Dodders (Cuscuta spp.) are obligate parasitic plants that obtain water and nutrients from the stems of host plants via specialized feeding structures called haustoria. Dodder haustoria facilitate bidirectional movement of viruses, proteins and mRNAs between host and parasite, but the functional effects of these movements are not known. Here we show that Cuscuta campestris haustoria accumulate high levels of many novel microRNAs (miRNAs) while parasitizing Arabidopsis thaliana. Many of these miRNAs are 22 nucleotides in length. Plant miRNAs of this length are uncommon, and are associated with amplification of target silencing through secondary short interfering RNA (siRNA) production. Several A. thaliana mRNAs are targeted by 22-nucleotide C. campestris miRNAs during parasitism, resulting in mRNA cleavage, secondary siRNA production, and decreased mRNA accumulation. Hosts with mutations in two of the loci that encode target mRNAs supported significantly higher growth of C. campestris. The same miRNAs that are expressed and active when C. campestris parasitizes A. thaliana are also expressed and active when it infects Nicotiana benthamiana. Homologues of target mRNAs from many other plant species also contain the predicted target sites for the induced C. campestris miRNAs. These data show that C. campestris miRNAs act as trans-species regulators of host-gene expression, and suggest that they may act as virulence factors during parasitism.
Assuntos
Arabidopsis/genética , Cuscuta/genética , Interações Hospedeiro-Parasita/genética , MicroRNAs/metabolismo , Nicotiana/genética , Clivagem do RNA , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Arabidopsis/parasitologia , Sequência de Bases , Cuscuta/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Especificidade de Hospedeiro , MicroRNAs/genética , Mutação , RNA Mensageiro/genética , RNA de Plantas/genética , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Nicotiana/parasitologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismoRESUMO
High-throughput sequencing of small RNAs (sRNA-seq) is a popular method used to discover and annotate microRNAs (miRNAs), endogenous short interfering RNAs (siRNAs), and Piwi-associated RNAs (piRNAs). One of the key steps in sRNA-seq data analysis is alignment to a reference genome. sRNA-seq libraries often have a high proportion of reads that align to multiple genomic locations, which makes determining their true origins difficult. Commonly used sRNA-seq alignment methods result in either very low precision (choosing an alignment at random), or sensitivity (ignoring multi-mapping reads). Here, we describe and test an sRNA-seq alignment strategy that uses local genomic context to guide decisions on proper placements of multi-mapped sRNA-seq reads. Tests using simulated sRNA-seq data demonstrated that this local-weighting method outperforms other alignment strategies using three different plant genomes. Experimental analyses with real sRNA-seq data also indicate superior performance of local-weighting methods for both plant miRNAs and heterochromatic siRNAs. The local-weighting methods we have developed are implemented as part of the sRNA-seq analysis program ShortStack, which is freely available under a general public license. Improved genome alignments of sRNA-seq data should increase the quality of downstream analyses and genome annotation efforts.
Assuntos
Mapeamento Cromossômico/métodos , Genoma de Planta , MicroRNAs/genética , RNA Interferente Pequeno/genética , Software , Arabidopsis/genética , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Oryza/genética , Análise de Sequência de RNA , Zea mays/genéticaRESUMO
Plant small RNAs are subject to various modifications. Previous reports revealed widespread 3' modifications (truncations and non-templated tailing) of plant miRNAs when the 2'-O-methyltransferase HEN1 is absent. However, non-templated nucleotides in plant heterochromatic siRNAs have not been deeply studied, especially in wild-type plants. We systematically studied non-templated nucleotide patterns in plant small RNAs by analyzing small RNA sequencing libraries from Arabidopsis, tomato, Medicago, rice, maize and Physcomitrella Elevated rates of non-templated nucleotides were observed at the 3' ends of both miRNAs and endogenous siRNAs from wild-type specimens of all species. 'Off-sized' small RNAs, such as 25 and 23 nt siRNAs arising from loci dominated by 24 nt siRNAs, often had very high rates of 3'-non-templated nucleotides. The same pattern was observed in all species that we studied. Further analysis of 24 nt siRNA clusters in Arabidopsis revealed distinct patterns of 3'-non-templated nucleotides of 23 nt siRNAs arising from heterochromatic siRNA loci. This pattern of non-templated 3' nucleotides on 23 nt siRNAs is not affected by loss of known small RNA 3'-end modifying enzymes, and may result from modifications added to longer heterochromatic siRNA precursors.
Assuntos
Genoma de Planta/genética , MicroRNAs/metabolismo , Nucleotídeos/metabolismo , Plantas/genética , RNA de Plantas/metabolismo , RNA Interferente Pequeno/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/metabolismo , Pareamento Incorreto de Bases , MicroRNAs/genética , Hibridização de Ácido Nucleico , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Moldes GenéticosRESUMO
Many plant small RNAs are sequence-specific negative regulators of target mRNAs and/or chromatin. In angiosperms, the two most abundant endogenous small RNA populations are usually 21-nucleotide microRNAs (miRNAs) and 24-nucleotide heterochromatic short interfering RNAs (siRNAs). Heterochromatic siRNAs are derived from repetitive regions and reinforce DNA methylation at targeted loci. The existence and extent of heterochromatic siRNAs in other land plant lineages has been unclear. Using small RNA-sequencing (RNA-seq) of the moss Physcomitrella patens, we identified 1090 loci that produce mostly 23- to 24-nucleotide siRNAs. These loci are mostly in intergenic regions with dense DNA methylation. Accumulation of siRNAs from these loci depends upon P. patens homologs of DICER-LIKE3 (DCL3), RNA-DEPENDENT RNA POLYMERASE2, and the largest subunit of DNA-DEPENDENT RNA POLYMERASE IV, with the largest subunit of a Pol V homolog contributing to expression at a smaller subset of the loci. A MINIMAL DICER-LIKE (mDCL) gene, which lacks the N-terminal helicase domain typical of DCL proteins, is specifically required for 23-nucleotide siRNA accumulation. We conclude that heterochromatic siRNAs, and their biogenesis pathways, are largely identical between angiosperms and P. patens, with the notable exception of the P. patens-specific use of mDCL to produce 23-nucleotide siRNAs.
Assuntos
Bryopsida/genética , Plantas/genética , RNA Interferente Pequeno/genética , Pequeno RNA não Traduzido/genética , Sequência de Aminoácidos , Sequência de Bases , Vias Biossintéticas/genética , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes de Plantas/genética , Heterocromatina/genética , MicroRNAs/genética , Anotação de Sequência Molecular , Dados de Sequência Molecular , Filogenia , Plantas/classificação , RNA Interferente Pequeno/classificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido NucleicoRESUMO
A key goal in genomics is the complete annotation of the expressed regions of the genome. In plants, substantial portions of the genome make regulatory small RNAs produced by Dicer-Like (DCL) proteins and utilized by Argonaute (AGO) proteins. These include miRNAs and various types of endogenous siRNAs. Small RNA-seq, enabled by cheap and fast DNA sequencing, has produced an enormous volume of data on plant miRNA and siRNA expression in recent years. In this review, we discuss recent progress in using small RNA-seq data to produce stable and reliable annotations of miRNA and siRNA genes in plants. In addition, we highlight key goals for the future of small RNA gene annotation in plants.
Assuntos
Genes de Plantas , MicroRNAs/genética , Anotação de Sequência Molecular , Plantas/genética , RNA de Plantas/genética , Heterocromatina/metabolismoRESUMO
microRNA156 (miR156) affects developmental timing in flowering plants. miR156 and its target relationships with members of the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene family appear universally conserved in land plants, but the specific functions of miR156 outside of flowering plants are unknown. We find that miR156 promotes a developmental change from young filamentous protonemata to leafy gametophores in the moss Physcomitrella patens, opposite to its role as an inhibitor of development in flowering plants. P. patens miR156 also influences accumulation of trans-acting small interfering RNAs (tasiRNAs) dependent upon a second ancient microRNA, miR390. Both miR156 and miR390 directly target a single major tasiRNA primary transcript. Inhibition of miR156 function causes increased miR390-triggered tasiRNA accumulation and decreased accumulation of tasiRNA targets. Overexpression of miR390 also caused a slower formation of gametophores, elevated miR390-triggered tasiRNA accumulation, and reduced level of tasiRNA targets. We conclude that a gene regulatory network controlled by miR156, miR390, and their targets controls developmental change in P. patens. The broad outlines and regulatory logic of this network are conserved in flowering plants, albeit with some modifications. Partially conserved small RNA networks thus influence developmental timing in plants with radically different body plans.
Assuntos
Bryopsida/crescimento & desenvolvimento , Bryopsida/genética , MicroRNAs/genética , RNA Interferente Pequeno/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Dados de Sequência MolecularRESUMO
Twenty-one-nucleotide microRNAs (miRNAs) and 24-nucleotide Pol IV-dependent small interfering RNAs (p4-siRNAs) are the most abundant types of small RNAs in angiosperms. Some miRNAs are well conserved among different plant lineages, whereas others are less conserved, and it is not clear whether less-conserved miRNAs have the same functionality as the well conserved ones. p4-siRNAs are broadly produced in the Arabidopsis genome, sometimes from active hot spot loci, but it is unknown whether individual p4-siRNA hot spots are retained as hot spots between plant species. In this study, we compare small RNAs in two closely related species (Arabidopsis thaliana and Arabidopsis lyrata) and find that less-conserved miRNAs have high rates of divergence in MIRNA hairpin structures, mature miRNA sequences, and target-complementary sites in the other species. The fidelity of miRNA biogenesis from many less-conserved MIRNA hairpins frequently deteriorates in the sister species relative to the species of first discovery. We also observe that p4-siRNA occupied loci have a slight tendency to be retained as p4-siRNA loci between species, but the most active A. lyrata p4-siRNA hot spots are generally not syntenic to the most active p4-siRNA hot spots of A. thaliana. Altogether, our findings indicate that many MIRNAs and most p4-siRNA hot spots are rapidly changing and evolutionarily transient within the Arabidopsis genus.
Assuntos
Arabidopsis/genética , MicroRNAs/genética , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Hibridização Genômica Comparativa , Evolução Molecular , Genoma de Planta , Conformação de Ácido Nucleico , Análise de Sequência de RNA , SinteniaRESUMO
Endogenous 24 nt short interfering RNAs (siRNAs), derived mostly from intergenic and repetitive genomic regions, constitute a major class of endogenous small RNAs in flowering plants. Accumulation of Arabidopsis thaliana 24 nt siRNAs requires the Dicer family member DCL3, and clear homologs of DCL3 exist in both flowering and non-flowering plants. However, the absence of a conspicuous 24 nt peak in the total RNA populations of several non-flowering plants has raised the question of whether this class of siRNAs might, in contrast to the ancient 21 nt microRNAs (miRNAs) and 21-22 nt trans-acting siRNAs (tasiRNAs), be an angiosperm-specific innovation. Analysis of non-miRNA, non-tasiRNA hotspots of small RNA production within the genome of the moss Physcomitrella patens revealed multiple loci that consistently produced a mixture of 21-24 nt siRNAs with a peak at 23 nt. These Pp23SR loci were significantly enriched in transposon content, depleted in overlap with annotated genes, and typified by dense concentrations of the 5-methyl cytosine (5 mC) DNA modification. Deep sequencing of small RNAs from two independent Ppdcl3 mutants showed that the P. patens DCL3 homolog is required for the accumulation of 22-24 nt siRNAs, but not 21 nt siRNAs, at Pp23SR loci. The 21 nt component of Pp23SR-derived siRNAs was also unaffected by a mutation in the RNA-dependent RNA polymerase mutant Pprdr6. Transcriptome-wide, Ppdcl3 mutants failed to accumulate 22-24 nt small RNAs from repetitive regions while transcripts from two abundant families of long terminal repeat (LTR) retrotransposon-associated reverse transcriptases were up-regulated. Ppdcl3 mutants also displayed an acceleration of leafy gametophore production, suggesting that repetitive siRNAs may play a role in the development of P. patens. We conclude that intergenic/repeat-derived siRNAs are indeed a broadly conserved, distinct class of small regulatory RNAs within land plants.