Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Open Res Eur ; 4: 78, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100074

RESUMO

The study of planets and small bodies within our Solar System is fundamental for understanding the formation and evolution of the Earth and other planets. Compositional and meteorological studies of the giant planets provide a foundation for understanding the nature of the most commonly observed exoplanets, while spectroscopic observations of the atmospheres of terrestrial planets, moons, and comets provide insights into the past and present-day habitability of planetary environments, and the availability of the chemical ingredients for life. While prior and existing (sub)millimeter observations have led to major advances in these areas, progress is hindered by limitations in the dynamic range, spatial and temporal coverage, as well as sensitivity of existing telescopes and interferometers. Here, we summarize some of the key planetary science use cases that factor into the design of the Atacama Large Aperture Submillimeter Telescope (AtLAST), a proposed 50-m class single dish facility: (1) to more fully characterize planetary wind fields and atmospheric thermal structures, (2) to measure the compositions of icy moon atmospheres and plumes, (3) to obtain detections of new, astrobiologically relevant gases and perform isotopic surveys of comets, and (4) to perform synergistic, temporally-resolved measurements in support of dedicated interplanetary space missions. The improved spatial coverage (several arcminutes), resolution (~ 1.2'' - 12''), bandwidth (several tens of GHz), dynamic range (~ 10 5) and sensitivity (~ 1 mK km s -1) required by these science cases would enable new insights into the chemistry and physics of planetary environments, the origins of prebiotic molecules and the habitability of planetary systems in general.


Our present understanding of what planets and comets are made of, and how their atmospheres move and change, has been greatly influenced by observations using existing and prior telescopes operating at wavelengths in the millimeter/submillimeter range (between the radio and infrared parts of the electromagnetic spectrum), yet major gaps exist in our knowledge of these diverse phenomena. Here, we describe the need for a new telescope capable of simultaneously observing features on very large and very small scales, and covering a very large spread of intrinsic brightness, in planets and comets. Such a telescope is required for mapping storms on giant planets, measuring the compositions of the atmospheres and plumes of icy moons, detecting new molecules in comets and planetary atmospheres, and to act as a complement for measurements by current and future interplanetary spacecraft missions. We discuss the limitations of currently-available millimeter/submillimeter telescopes, and summarize the requirements and applications of a new and larger, more sensitive facility operating at these wavelengths: the Atacama Large Aperture Submillimeter Telescope (AtLAST).

2.
Astron J ; 156(2)2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30510304

RESUMO

Small-scale waves were observed along the boundary between Jupiter's North Equatorial Belt and North Tropical Zone, ~16.5° N planetographic latitude in Hubble Space Telescope data in 2012 and throughout 2015 to 2018, observable at all wavelengths from the UV to the near IR. At peak visibility, the waves have sufficient contrast (~10%) to be observed from ground-based telescopes. They have a typical wavelength of about 1.2° (1400 km), variable-length wave trains, and westward phase speeds of a few m/s or less. New analysis of Voyager 2 data shows similar wave trains over at least 300 hours. Some waves appear curved when over cyclones and anticyclones, but most are straight, but tilted, shifting in latitude as they pass vortices. Based on their wavelengths, phase speeds, and faint appearance at high-altitude sensitive passbands, the observed NEB waves are consistent with inertia-gravity waves at the 500-mbar pressure level, though formation altitude is not well constrained. Preliminary General Circulation Model simulations generate inertia-gravity waves from vortices interacting with the environment and can reproduce the observed wavelengths and orientations. Several mechanisms can generate these waves, and all may contribute: geostrophic adjustment of cyclones; cyclone/anticyclone interactions; wind interactions with obstructions or heat pulses from convection; or changing vertical wind shear. However, observations also show that the presence of vortices and/or regions of convection are not sufficient by themselves for wave formation, implying that a change in vertical structure may affect their stability, or that changes in haze properties may affect their visibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA