Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Biochem Pharmacol ; 182: 114230, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32979352

RESUMO

L-asparaginase (ASNase) from Escherichia coli (EcAII) is used in the treatment of acute lymphoblastic leukaemia (ALL). EcAII activity in vivo has been described to be influenced by the human lysosomal proteases asparaginyl endopeptidase (AEP) and cathepsin B (CTSB); these hydrolases cleave and could expose epitopes associated with the immune response against EcAII. In this work, we show that ASNase resistance to CTSB and/or AEP influences the formation of anti-ASNase antibodies, one of the main causes of hypersensitivity reactions in patients. Error-prone polymerase chain reaction was used to produce variants of EcAII more resistant to proteolytic cleavage by AEP and CTSB. The variants with enzymatic activity and cytotoxicity levels equivalent to or better than EcAII WT were submitted to in vivo assays. Only one of the mutants presented increased serum half-life, so resistance to these proteases is not the only feature involved in EcAII stability in vivo. Our results showed alteration of the phenotypic profile of B cells isolated after animal treatment with different protease-resistant proteoforms. Furthermore, mice that were exposed to the protease-resistant proteoforms presented lower anti-asparaginase antibodies production in vivo. Our data suggest that modulating resistance to lysosomal proteases can result in less immunogenic protein drugs.


Assuntos
Antineoplásicos/farmacologia , Asparaginase/farmacologia , Produtos Biológicos/farmacologia , Fenômenos Imunogenéticos/efeitos dos fármacos , Lisossomos/imunologia , Peptídeo Hidrolases/farmacologia , Sequência de Aminoácidos , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Asparaginase/química , Asparaginase/uso terapêutico , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Galinhas , Relação Dose-Resposta a Droga , Escherichia coli , Feminino , Cavalos , Humanos , Fenômenos Imunogenéticos/fisiologia , Células Jurkat , Lisossomos/química , Camundongos , Camundongos Endogâmicos BALB C , Peptídeo Hidrolases/química , Peptídeo Hidrolases/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Estrutura Secundária de Proteína
2.
Biotechnol Prog ; 33(2): 416-424, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27863173

RESUMO

l-asparaginase (ASNase) is a biopharmaceutical widely used to treat child leukemia. However, it presents some side effects, and in order to provide an alternative biopharmaceutical, in this work, the genes encoding ASNase from Saccharomyces cerevisiae (Sc_ASNaseI and Sc_ASNaseII) were cloned in the prokaryotic expression system Escherichia coli. In the 93 different expression conditions tested, the Sc_ASNaseII protein was always obtained as an insoluble and inactive form. However, the Sc_ASNaseI (His)6 -tagged recombinant protein was produced in large amounts in the soluble fraction of the protein extract. Affinity chromatography was performed on a Fast Protein Liquid Chromatography (FPLC) system using Ni2+ -charged, HiTrap Immobilized Metal ion Affinity Chromatography (IMAC) FF in order to purify active Sc_ASNaseI recombinant protein. The results suggest that the strategy for the expression and purification of this potential new biopharmaceutical protein with lower side effects was efficient since high amounts of soluble Sc_ASNaseI with high specific activity (110.1 ± 0.3 IU mg-1 ) were obtained. In addition, the use of FPLC-IMAC proved to be an efficient tool in the purification of this enzyme, since a good recovery (40.50 ± 0.01%) was achieved with a purification factor of 17-fold. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:416-424, 2017.


Assuntos
Asparaginase/biossíntese , Asparaginase/química , Escherichia coli/fisiologia , Saccharomyces cerevisiae/fisiologia , Asparaginase/genética , Clonagem Molecular/métodos , Ativação Enzimática , Estabilidade Enzimática , Regulação Bacteriana da Expressão Gênica/genética , Regulação Enzimológica da Expressão Gênica/genética , Engenharia de Proteínas/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
3.
BMC Microbiol ; 11: 268, 2011 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22204397

RESUMO

BACKGROUND: The gene YCL047C, which has been renamed promoter of filamentation gene (POF1), has recently been described as a cell component involved in yeast filamentous growth. The objective of this work is to understand the molecular and biological function of this gene. RESULTS: Here, we report that the protein encoded by the POF1 gene, Pof1p, is an ATPase that may be part of the Saccharomyces cerevisiae protein quality control pathway. According to the results, Δpof1 cells showed increased sensitivity to hydrogen peroxide, tert-butyl hydroperoxide, heat shock and protein unfolding agents, such as dithiothreitol and tunicamycin. Besides, the overexpression of POF1 suppressed the sensitivity of Δpct1, a strain that lacks a gene that encodes a phosphocholine cytidylyltransferase, to heat shock. In vitro analysis showed, however, that the purified Pof1p enzyme had no cytidylyltransferase activity but does have ATPase activity, with catalytic efficiency comparable to other ATPases involved in endoplasmic reticulum-associated degradation of proteins (ERAD). Supporting these findings, co-immunoprecipitation experiments showed a physical interaction between Pof1p and Ubc7p (an ubiquitin conjugating enzyme) in vivo. CONCLUSIONS: Taken together, the results strongly suggest that the biological function of Pof1p is related to the regulation of protein degradation.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/genética , Degradação Associada com o Retículo Endoplasmático , Proteólise , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA