Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glia ; 71(8): 1791-1803, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36866453

RESUMO

Zika virus (ZIKV) is a strongly neurotropic flavivirus whose infection has been associated with microcephaly in neonates. However, clinical and experimental evidence indicate that ZIKV also affects the adult nervous system. In this regard, in vitro and in vivo studies have shown the ability of ZIKV to infect glial cells. In the central nervous system (CNS), glial cells are represented by astrocytes, microglia, and oligodendrocytes. In contrast, the peripheral nervous system (PNS) constitutes a highly heterogeneous group of cells (Schwann cells, satellite glial cells, and enteric glial cells) spread through the body. These cells are critical in both physiological and pathological conditions; as such, ZIKV-induced glial dysfunctions can be associated with the development and progression of neurological complications, including those related to the adult and aging brain. This review will address the effects of ZIKV infection on CNS and PNS glial cells, focusing on cellular and molecular mechanisms, including changes in the inflammatory response, oxidative stress, mitochondrial dysfunction, Ca2+ and glutamate homeostasis, neural metabolism, and neuron-glia communication. Of note, preventive and therapeutic strategies that focus on glial cells may emerge to delay and/or prevent the development of ZIKV-induced neurodegeneration and its consequences.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Zika virus/fisiologia , Infecção por Zika virus/complicações , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/patologia , Neuroglia/metabolismo , Sistema Nervoso Central/metabolismo , Encéfalo/metabolismo
2.
Mol Neurobiol ; 58(12): 6577-6592, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34581988

RESUMO

Glial cells (astrocytes, oligodendrocytes and microglia) are critical for the central nervous system (CNS) in both physiological and pathological conditions. With this in mind, several studies have indicated that glial cells play key roles in the development and progression of CNS diseases. In this sense, gliotoxicity can be referred as the cellular, molecular, and neurochemical changes that can mediate toxic effects or ultimately lead to impairment of the ability of glial cells to protect neurons and/or other glial cells. On the other hand, glioprotection is associated with specific responses of glial cells, by which they can protect themselves as well as neurons, resulting in an overall improvement of the CNS functioning. In addition, gliotoxic events, including metabolic stresses, inflammation, excitotoxicity, and oxidative stress, as well as their related mechanisms, are strongly associated with the pathogenesis of neurological, psychiatric and infectious diseases. However, glioprotective molecules can prevent or improve these glial dysfunctions, representing glial cells-targeting therapies. Therefore, this review will provide a brief summary of types and functions of glial cells and point out cellular and molecular mechanisms associated with gliotoxicity and glioprotection, potential glioprotective molecules and their mechanisms, as well as gliotherapy. In summary, we expect to address the relevance of gliotoxicity and glioprotection in the CNS homeostasis and diseases.


Assuntos
Encéfalo/metabolismo , Neuroglia/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
3.
Neurochem Res ; 45(7): 1526-1535, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32185643

RESUMO

Chronic and/or excessive consumption of alcohol followed by reduced consumption or abstention can result in Alcohol Withdrawal Syndrome. A number of behavioral changes and neurological damage result from ethanol (EtOH) withdrawal. Ceftriaxone (Cef) modulates the activity of excitatory amino acid transporters by increasing their gene expression. Zebrafish are commonly used to study alcohol exposure. The aim of this study was to evaluate the influence of Cef (100 µM) on behavior patterns, glutamate transport activity, and oxidative stress in zebrafish brains subjected to EtOH (0.3% v/v) withdrawal. The exploratory tests using Novel tank showed that EtOH withdrawal promoted a decrease in the time spent and number of entries of in the bottom displaying an anxiety-like behavior. In contrast, treatment with Cef resulted in recovery of exploratory behavioral patterns. Ceftriaxone treatment resulted in increased glutamate uptake in zebrafish subjected to EtOH withdrawal. Furthermore, EtOH withdrawal increased reactive species, as determined using thiobarbituric acid and dichlorodihydrofluorescein assays. Treatment with Cef reversed these effects. Ceftriaxone promoted a significant reduction in brain sulfhydryl content in zebrafish subjected to EtOH withdrawal. Therefore, Cef treatment in conjunction with EtOH withdrawal induced anxiolytic-like effects due to possible neuromodulation of glutamatergic transporters, potentially through mitigation of oxidative stress.


Assuntos
Ansiedade/metabolismo , Encéfalo/metabolismo , Ceftriaxona/uso terapêutico , Etanol/efeitos adversos , Ácido Glutâmico/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/psicologia , Animais , Ansiedade/tratamento farmacológico , Ansiedade/psicologia , Encéfalo/efeitos dos fármacos , Ceftriaxona/farmacologia , Etanol/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Síndrome de Abstinência a Substâncias/prevenção & controle , Síndrome de Abstinência a Substâncias/psicologia , Peixe-Zebra
4.
Neurotox Res ; 33(4): 749-758, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28942534

RESUMO

Ethanol is a widely used drug, and excess or even moderate consumption of ethanol is associated with changes in several neurotransmitter systems, including the cholinergic system. The incidence of alcoholic dementia and its insults are well supported by multiple studies, although the mechanisms of neurotoxicity are still poorly understood. Considering that zebrafish have a complete central nervous system (CNS) and that several signaling systems have already been identified in zebrafish, this neurotoxicological model has become useful. In the present study, we investigated the long-term effects of ethanol consumption on the cholinergic system, on oxidative stress, and on inflammatory parameters in the zebrafish brain. Animals were exposed to 0.5% (v/v) ethanol for 7, 14, and 28 days. Ethanol inhibited choline acetyltransferase activity after 7 and 14 days but not after 28 days. Acetylcholinesterase activity did not change after any of the exposure periods. When compared to the control group, thiobarbituric acid reactive species and dichlorodihydrofluorescein levels were increased after chronic ethanol exposure. Antioxidant activity promoted by the CAT/SOD ratio was altered after chronic ethanol exposure, suggesting that EtOH can induce oxidative damage in the zebrafish brain. In contrast, nitrate and nitrite levels and sulfhydryl content were not altered. Ethanol did not modify gene expression of the inflammatory cytokines il-1b, il-10, or tnf-α in the zebrafish brain. Therefore, the cholinergic system and the oxidative balance were targeted by chronic ethanol toxicity. This neurochemical regulatory mechanism may play an important role in understanding the effects of long-term ethanol consumption and tolerance in zebrafish model studies.


Assuntos
Acetilcolina/metabolismo , Encéfalo/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Animais , Catalase/metabolismo , Colina O-Acetiltransferase/metabolismo , Citocinas/genética , Citocinas/metabolismo , Ácido Ditionitrobenzoico/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Nitratos/metabolismo , Nitritos/metabolismo , RNA Mensageiro/metabolismo , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Fatores de Tempo , Peixe-Zebra
5.
Dis Markers ; 2015: 312530, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26770008

RESUMO

Hereditary fructose intolerance (HFI) is an autosomal-recessive disorder characterized by fructose and fructose-1-phosphate accumulation in tissues and biological fluids of patients. This disease results from a deficiency of aldolase B, which metabolizes fructose in the liver, kidney, and small intestine. We here investigated the effect of acute fructose administration on the activities of mitochondrial respiratory chain complexes, succinate dehydrogenase (SDH), and malate dehydrogenase (MDH) in cerebral cortex, liver, kidney, and skeletal muscle of male 30-day-old Wistar rats. The rats received subcutaneous injection of sodium chloride (0.9%; control group) or fructose solution (5 µmol/g; treated group). One hour later, the animals were euthanized and the cerebral cortex, liver, kidney, and skeletal muscle were isolated and homogenized for the investigations. Acute fructose administration increased complex I-III activity in liver. On the other hand, decreased complexes II and II-III activities in skeletal muscle and MDH in kidney were found. Interestingly, none of these parameters were affected in vitro. Our present data indicate that fructose administration elicits impairment of mitochondrial energy metabolism, which may contribute to the pathogenesis of the HFI patients.


Assuntos
Intolerância à Frutose/metabolismo , Frutose/farmacologia , Malato Desidrogenase/metabolismo , Succinato Desidrogenase/metabolismo , Animais , Córtex Cerebral/metabolismo , Frutose/administração & dosagem , Rim/metabolismo , Fígado/metabolismo , Masculino , Músculo Esquelético , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA