Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Phys Chem B ; 128(10): 2481-2489, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38433612

RESUMO

Porous liquids are new materials that provide permanent porosity in the liquid phase through the dispersion of nanoporous solid particles in a bulky solvent. Herein, we aim at understanding how new sustainable solvents such as deep eutectic solvent (DES) can be used to form porous stable suspensions for the capture of gases of interest for sustainable chemistry. The properties of an ionic DES, methyltriphenylphosphonium bromide/glycerol in a 1:3 molar composition, and its behavior at the interface with a metal-organic framework (MOF), ZIF-8, are here investigated by polarizable molecular dynamics simulations. The structural and dynamic properties of the DES are analyzed in the bulk liquid and in the interfacial regions with the MOF, namely, in the accessible cavities exposed at the surface. The porosity of the suspension is maintained, and it is caused not only by the Coulomb cohesive energy between cations and anions, which prevents the small anions from entering the pores, but also by the glycerol molecules not penetrating the small aperture of the ZIF-8 structure. This was further verified by simulating a system composed of glycerol and ZIF-8. Simulations with CO2 show its partition between the DES and the MOF, with higher concentrations registered in the MOF cavities.

2.
J Phys Chem Lett ; 15(1): 248-253, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38165169

RESUMO

Intermolecular interactions in ionic liquids are mainly governed by Coulombic forces. Attraction between cations has been previously observed and was attributed to dispersion interactions between nonpolar moieties, hydrogen bonding, or π stacking. In this study, we present the intriguing behavior of tetracyanoborate anions in ionic liquids that, unlike their dicyanamide and tricyanomethanide counterparts, form dimers in both solid and liquid phases. A joint simulation and experimental study uncovers the origin of such anion-anion attraction: stabilization by induction and dispersion forces between several cyano groups, which is strong enough to overcome electrostatic repulsion. These findings open up new opportunities in the rational design of ionic liquids, where interactions between ions of the same charge can be controlled and fine-tuned by the presence of cyano groups.

3.
Nat Commun ; 14(1): 6684, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865651

RESUMO

Chemists aim to meet modern sustainability, health, and safety requirements by replacing conventional solvents with deep eutectic solvents (DESs). Through large melting point depressions, DESs may incorporate renewable solids in task-specific liquids. Yet, DES design is complicated by complex molecular interactions and a lack of comprehensive property databases. Even measuring pure component melting properties can be challenging, due to decomposition before melting. Here we overcame the decomposition of the quintessential DES constituent, choline chloride (ChCl). We measured its enthalpy of fusion (13.8 ± 3.0 kJ ⋅ mol) and melting point (687 ± 9 K) by fast scanning calorimetry combined with micro-XRD and high-speed optical microscopy. Our thermodynamically coherent fusion properties identify ChCl as an ionic plastic crystal and demonstrate negative deviations from ideal mixing for ChCl-contradicting previous assumptions. We hypothesise that the plastic crystal nature of ammonium salts governs their resilience to melting; pure or mixed. We show that DESs based on ionic plastic crystals can profit from (1) a low enthalpy of fusion and (2) favourable mixing. Both depress the melting point and can be altered through ion selection. Ionic plastic crystal-based DESs thus offer a platform for task-specific liquids at a broad range of temperatures and compositions.

4.
ACS Nano ; 17(20): 19508-19513, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37812175

RESUMO

This Perspective points toward pathways to prepare porous ionic liquids using easily accessible materials, aiming for reduced environmental impact. We demonstrate that suspensions of porous solids are stable in eutectic mixtures, underscoring their potential for the preparation of porous ionic liquids. Porous ionic liquids retain the wide electrochemical window observed in their precursor pure ionic liquids, rendering them well-suited for green electrochemical reactions, particularly those involving gases whose solubility is enhanced in the porous suspensions. Moreover, their capacity as gas-rich media points to sustainable biomedical and pharmaceutical applications, provided nontoxic, biocompatible ionic liquids and porous solids are utilized.

5.
J Phys Chem B ; 127(14): 3266-3277, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37011369

RESUMO

Porous ionic liquids, which are suspensions of nanoporous particles in ionic liquids that maintain permanent porosity, are effective and selective media for the conversion of styrene oxide into styrene carbonate, absorbing CO2 [Zhou et al. Chem. Commun. 2021, 57, 7922-7925]. Here we elucidate the mechanism of selectivity using polarizable molecular dynamics simulations, which provide a detailed view on the structure of the porous ionic liquid and on the local solvation environments of the reacting species. The porous ionic liquids studied are composed of tetradecyltrihexylphosphonium chloride, or [P66614]Cl, and the ZIF-8 zinc-methylimidazolate metal-organic framework (MOF). The CL&Pol polarizable force field was extended to represent epoxide and cyclic carbonate functional groups, allowing the ionic liquid, the reactants, and the MOF to be all represented by fully flexible, polarizable force fields, providing a detailed description of interactions. The presence of reactant and product molecules leads to changes in the structure of the ionic liquid, revealed by domain analysis. The structure of local solvation environments, namely, the arrangement of charged moieties and CO2 around the epoxide ring of the reactant molecules, clearly indicate ring-opening the reaction mechanism. The MOF acts as a reservoir of CO2 through its free volume. The solute molecules are found in the accessible outer cavities of the MOF, which promotes reaction of the epoxide with CO2 excluding other epoxide molecules, thereby preventing the formation of oligomers, which explains the selectivity toward conversion to cyclic carbonates.

6.
J Phys Chem B ; 127(15): 3402-3415, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36867065

RESUMO

The solubility of ethane, ethylene, propane, and propylene was measured in two phosphorus-containing ionic liquids, trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate, [P6,6,6,14][DiOP], and 1-butyl-3-methylimidazolium dimethylphosphate, [C4C1Im][DMP], using an isochoric saturation method. The ionic liquid [C4C1Im][DMP] absorbed between 1 and 20 molecules of gas per 1000 ion pairs, at 313 K and 0.1 MPa, while [P6,6,6,14][DiOP] absorbed up to 169 molecules of propane per 1000 ion pairs under the same conditions. [C4C1Im][DMP] had a higher capacity to absorb olefins than paraffins, while the opposite was true for [P6,6,6,14][DiOP], with the former being slightly more selective than the later. From the analysis of the thermodynamic properties of solvation, we concluded that in both ionic liquids and for all of the studied gases the solvation is ruled by the entropy, even if its contribution is unfavorable. These results, together with density measurements, 2D NMR studies, and self-diffusion coefficients suggest that the gases' solubility is ruled mostly by nonspecific interactions with the ionic liquids and that the looser ion packing in [P6,6,6,14][DiOP] makes it easier to accommodate the gases compared to [C4C1Im][DMP].

7.
Phys Chem Chem Phys ; 25(9): 6808-6816, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36790213

RESUMO

Surface active ionic liquids (SAILs) combine useful characteristics of both ionic liquids (ILs) and surfactants, hence are promising candidates for a wide range of applications. However, the effect of SAIL ionic structures on their physicochemical properties remains unclear, which limits their uptake. To address this knowledge gap, in this work we investigated the density, viscosity, surface tension, and corresponding critical micelle concentration in water, as well as gas absorption of SAILs with a variety of cation and anion structures. SAILs containing anions with linear alkyl chains have smaller molar volumes than those with branched alkyl chains, because linear alkyl chains are interdigitated to a greater extent, leading to more compact packing. This interdigitation also results in SAILs being about two orders of magnitude more viscous than comparable conventional ILs. SAILs at the liquid-air interface orient alkyl chains towards the air, leading to low surface tensions closer to n-alkanes than conventional ILs. Critical temperatures of about 900 K could be estimated for all SAILs from their surface tensions. When dissolved in water, SAILs adsorb at the liquid-air interface and lower the surface tension, like conventional surfactants in water, after which micelles form. Molecular simulations show that the micelles are spherical and that lower critical micelle concentrations correspond to the formation of aggregates with a larger number of ion pairs. CO2 and N2 absorption capacities are examined and we conclude that ionic liquids with larger non-polar domains absorb larger quantities of both gases.

8.
Phys Chem Chem Phys ; 25(8): 6316-6325, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36779289

RESUMO

Understanding the structure-property relationship and nanoscopic behaviour of ionic liquids is of utmost importance for their potential applications. Focusing these studies on sets of homobaric ionic liquids could provide important insight into the effects of specific chemical groups on the overall interaction profile, bringing researchers one step closer to succesfully designing ionic liquids which are tailor-made for specific applications. This work focuses on ionic liquids with 12 total carbons on their side chains, studying both their bulk physical properties (such as densities and viscosities) and their nanostructuring. The results reveal that by keeping the total number of carbons constant, but arranging them differently around the imidazolium ring, either in a linear or in a branched-chain formation, can result in compounds with quite distinct properties. Some of those (such as diffusivity) appear to be more sensitive to symmetry variations, while others (such as density) are not significantly affected. X-ray scattering is used in order to get a clearer understanding of the nanostructuring of the studied compounds and to investigate to what extent the observed macroscopic properties are directly linked to the nanoscale ordering.

9.
J Phys Chem B ; 126(47): 9901-9910, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36383753

RESUMO

The efficient capture of CO2 from flue gas or directly from the atmosphere is a key subject to mitigate global warming, with several chemical and physical absorption methods previously reported. Through polarizable molecular dynamics (MD) simulations and high-level quantum chemical (QC) calculations, the physical and chemical absorption of CO2 by ionic liquids based on imidazolium cations bearing oxirane groups was investigated. The ability of the imidazolium group to absorb CO2 was found to be prevalent in both the tri- and tetraepoxidized imidazolium ionic liquids (ILs) with coordination numbers over 2 for CO2 within the first solvation shell in both systems. Thermodynamic analysis of the addition of CO2 to convert epoxy groups to cyclic carbonates also indicated that the overall reaction is exergonic for all systems tested, allowing for chemical absorption of CO2 to also be favored. The rate-determining step of the chemical absorption involved the initial opening of the epoxy ring through addition of the chloride anion and was seen to vary greatly between the epoxy groups tested. Among the groups tested, the less sterically hindered monoepoxy side of the triepoxidized imidazolium was shown to be uniquely capable of undergoing intramolecular hydrogen bonding and thus lowering the barrier required for the intermediate structure to form during the reaction. Overall, this theoretical investigation highlights the potential for epoxidized imidazolium chloride ionic liquids for simultaneous chemical and physical absorption of CO2.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Dióxido de Carbono/química , Ânions/química , Termodinâmica , Ligação de Hidrogênio
10.
Chem Sci ; 13(31): 9062-9073, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36091212

RESUMO

The branching of ionic liquid cation sidechains utilizing silicon as the backbone was explored and it was found that this structural feature leads to fluids with remarkably low density and viscosity. The relatively low liquid densities suggest a large free volume in these liquids. Argon solubility was measured using a precise saturation method to probe the relative free volumes. Argon molar solubilities were slightly higher in ionic liquids with alkylsilane and siloxane groups within the cation, compared to carbon-based branched groups. The anion size, however, showed by far the dominant effect on argon solubility. Thermodynamic solvation parameters were derived from the solubility data and the argon solvation environment was modelled utilizing the polarizable CL&Pol force field. Semiquantitative analysis was in agreement with trends established from the experimental data. The results of this investigation demonstrate design principles for targeted ionic liquids when optimisation for the free volume is required, and demonstrate the utility of argon as a simple, noninteracting probe. As more ionic liquids find their way into industrial processes of scale, these findings are important for their utilisation in the capture of any gaseous solute, gas separation, or in processes involving the transformation of gases or small molecules.

11.
Nature ; 608(7924): 672-673, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36002481
12.
Phys Chem Chem Phys ; 23(40): 23130-23140, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34617083

RESUMO

Four divalent ionic liquids based on imidazolium cations with alkyl or ether functionalized side-chains were synthesised and characterized: 3,3'-(tetraethyleneglycol-1,11-diyl)bis(1-methyl-1H-imidazolium)bromide, [tetraEG(mim)2][Br]2, 3,3'-(tetraethyleneglycol-1,11-diyl)bis(1-methyl-1H-imidazolium)acetate, [tetraEG(mim)2][OAc]2, 1-butyl-3-methylimidazolium malonate, [C4mim]2[Mal], and 3-butyl-1-methylimidazolium glutarate, [C4mim]2[Glut]. Their densities vary between 1.1 and 1.5 g cm-3 and their viscosities between 0.2 and 4 Pa s at 353 K. We found that the molar volumes are not additive, especially in the case of the divalent ionic liquids based on the double-charged imidazolium cations, meaning that they cannot be predicted using common group contribution methods. The reason for this behaviour could be explained by the structure of the cations, which is dominated by intramolecular hydrogen bonding. The carboxylate-based divalent ionic liquids absorb reversibly large quantities of carbon dioxide following a chemical mechanism described before. An improved 1 : 1 stoichiometry is achieved both in a double-charged imidazolium acetate ionic liquid and in imidazolium carboxylate salts with double charged anions. This behaviour places these ionic liquids amongst the best performing for carbon dioxide absorption.

13.
J Chem Inf Model ; 61(9): 4521-4536, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34406000

RESUMO

Water is a unique solvent that is ubiquitous in biology and present in a variety of solutions, mixtures, and materials settings. It therefore forms the basis for all molecular dynamics simulations of biological phenomena, as well as for many chemical, industrial, and materials investigations. Over the years, many water models have been developed, and it remains a challenge to find a single water model that accurately reproduces all experimental properties of water simultaneously. Here, we report a comprehensive comparison of structural and dynamic properties of 30 commonly used 3-point, 4-point, 5-point, and polarizable water models simulated using consistent settings and analysis methods. For the properties of density, coordination number, surface tension, dielectric constant, self-diffusion coefficient, and solvation free energy of methane, models published within the past two decades consistently show better agreement with experimental values compared to models published earlier, albeit with some notable exceptions. However, no single model reproduced all experimental values exactly, highlighting the need to carefully choose a water model for a particular study, depending on the phenomena of interest. Finally, machine learning algorithms quantified the relationship between the water model force field parameters and the resulting bulk properties, providing insight into the parameter-property relationship and illustrating the challenges of developing a water model that can accurately reproduce all properties of water simultaneously.


Assuntos
Simulação de Dinâmica Molecular , Água , Solventes , Termodinâmica
14.
Chem Commun (Camb) ; 57(64): 7922-7925, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34286748

RESUMO

Porous ionic liquids combining alkylphosphonium halides with ZIF-8 absorb large amounts of carbon dioxide that can be catalytically coupled with epoxides to form cyclic carbonates. High activity and selectivity under mild reaction conditions points towards a new promising, high-performing, sustainable family of sorbents for simultaneous carbon capture and transformation.

15.
Angew Chem Int Ed Engl ; 60(23): 12876-12882, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33754419

RESUMO

Porous ionic liquids are non-volatile, versatile materials that associate porosity and fluidity. New porous ionic liquids, based on the ZIF-8 metal-organic framework and on phosphonium acetate or levulinate salts, were prepared and show an increased capacity to absorb carbon dioxide at low pressures. Porous suspensions based on phosphonium levulinate ionic liquid absorb reversibly 103 % more carbon dioxide per mass than pure ZIF-8 at 1 bar and 303 K. We show how the rational combination of MOFs with ionic liquids can greatly enhance low pressure CO2 absorption, paving the way towards a new generation of high-performance, readily available liquid materials for effective low pressure carbon capture.

16.
Phys Chem Chem Phys ; 23(8): 4624-4635, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33624679

RESUMO

We have prepared novel divalent ionic liquids (ILs) based on the bis(trifluoromethylsulfonyl)imide anion where two charged imidazolium groups in the cations are either directly bound to each other or linked by a single atom. We assessed the influence of the side-chain functionality and divalency on their physical properties and on the thermodynamics of mixing. The results indicate that shortening the spacer of a divalent IL reduces its thermal stability and increases its viscosity. Mixtures of divalent and monovalent ILs show small but significant deviations from ideality upon mixing. These deviations appear to depend primarily on the (mis)match of the nature and length of the cation side-chain. The non-ideality imposed by mixing ILs with different side-chains appears to be enhanced by the increase in formal charge of the cations in the mixture.

17.
J Chem Theory Comput ; 17(3): 1606-1617, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33555860

RESUMO

The polarizable CL&Pol force field presented in our previous study, Transferable, Polarizable Force Field for Ionic Liquids (J. Chem. Theory Comput. 2019, 15, 5858, DOI: http://doi.org/10.1021/acs.jctc.9b0068910.1021/acs.jctc.9b00689), is extended to electrolytes, protic ionic liquids (PIL), deep eutectic solvents (DES), and glycols. These systems are problematic in polarizable simulations because they contain either small, highly charged ions or strong hydrogen bonds, which cause trajectory instabilities due to the pull exerted on the induced dipoles. We use a Tang-Toennies (TT) function to dampen, or smear, the interactions between charges and induced dipole at a short range involving small, highly charged atoms (such as hydrogen or lithium), thus preventing the "polarization catastrophe". The new force field gives stable trajectories and is validated through comparison with experimental data on density, viscosity, and ion diffusion coefficients of liquid systems of the above-mentioned classes. The results also shed light on the hydrogen-bonding pattern in ethylammonium nitrate, a PIL, for which the literature contains conflicting views. We describe the implementation of the TT damping function, of the temperature-grouped Nosé-Hoover thermostat for polarizable molecular dynamics (MD) and of the periodic perturbation method for viscosity evaluation from non-equilibrium trajectories in the LAMMPS MD code. The main result of this work is the wider applicability of the CL&Pol polarizable force field to new, important classes of fluids, achieving robust trajectories and a good description of equilibrium and transport properties in challenging systems. The fragment-based approach of CL&Pol will allow ready extension to a wide variety of PILs, DES, and electrolytes.

18.
Phys Chem Chem Phys ; 23(1): 107-111, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33346262

RESUMO

The Deep Eutectic Solvents/Systems (DESs) choline chloride:urea (xChCl = 0.33) and choline chloride:glycolic acid (xChCl = 0.5) were investigated using viscosity-corrected 35Cl NMR spectroscopy and molecular dynamics simulations to probe the role of chloride as a function of water content. Three Cl- solvation regimes are revealed, with high-symmetry environments for pure and highly dilute DES, and an unusual low-symmetry interstitial region where the primary coordination sphere is most disordered.

19.
Phys Chem Chem Phys ; 22(35): 20114-20122, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32936137

RESUMO

Understanding the transport of sodium ions in ionic liquids is key to designing novel electrolyte materials for sodium-ion batteries. In this work, we combine molecular dynamics simulation and experiments to study how molecular interactions and local ordering affect relevant physico-chemical properties. Ionic transport and local solvation environments are investigated in electrolytes composed of sodium bis(fluorosulfonyl)imide, (Na[FSI]), in N,N-methylpropylpyrrolidinium bis(fluorosulfonyl)imide, [C3C1pyr][FSI], at different salt concentrations. The electrolyte systems are modelled by means of molecular dynamic simulations using a polarizable force field. We show that including polarization effects explicitly in the molecular simulations is required in order to attain a reliable description of the transport properties of sodium in the [C3C1pyr][FSI] electrolyte. The validation of the computational results upon comparison with experimental data allows us to assess the suitability of polarizable force fields in describing and interpreting the structure and dynamics of the sodium salt-ionic liquid system, which is essential to enable the application of IL-based electrolytes in novel energy-storage technologies.

20.
Environ Sci Technol ; 54(19): 12784-12794, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32822151

RESUMO

The environmental impact of fluorinated gases (F-gases) necessitates the development of green technologies to mitigate them. Fluorinated ionic liquids (FIL/ILs) emerged as an alternative absorbent due to their unique and exceptional properties. In this work, a COSMO-based/Aspen Plus methodology was used to evaluate the performance of FIL/ILs as absorbents in the process scale of two F-gases: 1,1,1,2-tetrafluoroethane (R-134a) and difluoromethane (R-32). Results of the absorption column in equilibrium mode revealed that the behavior of FIL/ILs is similar under the same conditions, reaching higher efficiencies in the case of absorbing R-134a at a high F-gas partial pressure. Rate-based calculations in packing column demonstrated a kinetic control with highly viscous FIL/ILs, revealing higher performance differences between FIL/IL absorbents. The regeneration stage was also evaluated in near-industrial conditions. Operating conditions of the absorption column were optimized with a column of height 10 m and diameter ranging from 1.1 to 1.2 m at 10 bar total pressure, reaching 90% F gas recovery with an L/G range of 6-10. Finally, preliminary economic analysis revealed operating costs to recover 90% of F-gas of 70 $/ton (R-134a) and 130 $/ton (R-32) with the FIL/IL that revealed the best behavior, 1-ethyl-3-methylimidazolium triflate.


Assuntos
Líquidos Iônicos , Gases , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA