Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
1.
Beilstein J Org Chem ; 20: 1167-1178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887581

RESUMO

We describe the use of bismuth(III) triflate as an efficient and environmentally friendly catalyst for the Nazarov reaction of aryl vinyl ketones, leading to the synthesis of 3-aryl-2-ethoxycarbonyl-1-indanones and 3-aryl-1-indanones. By changing the temperature and reaction time, it was possible to modulate the reactivity, allowing the synthesis of two distinct product classes (3-aryl-2-ethoxycarbonyl-1-indanones and 3-aryl-1-indanones) in good to excellent yield. The reaction did not require additives and was insensitive to both air and moisture. Preliminary biological evaluation of some indanones showed a promising profile against some human cancer line cells.

2.
Anal Chem ; 96(19): 7460-7469, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38702053

RESUMO

Natural products (or specialized metabolites) are historically the main source of new drugs. However, the current drug discovery pipelines require miniaturization and speeds that are incompatible with traditional natural product research methods, especially in the early stages of the research. This article introduces the NP3 MS Workflow, a robust open-source software system for liquid chromatography-tandem mass spectrometry (LC-MS/MS) untargeted metabolomic data processing and analysis, designed to rank bioactive natural products directly from complex mixtures of compounds, such as bioactive biota samples. NP3 MS Workflow allows minimal user intervention as well as customization of each step of LC-MS/MS data processing, with diagnostic statistics to allow interpretation and optimization of LC-MS/MS data processing by the user. NP3 MS Workflow adds improved computing of the MS2 spectra in an LC-MS/MS data set and provides tools for automatic [M + H]+ ion deconvolution using fragmentation rules; chemical structural annotation against MS2 databases; and relative quantification of the precursor ions for bioactivity correlation scoring. The software will be presented with case studies and comparisons with equivalent tools currently available. NP3 MS Workflow shows a robust and useful approach to select bioactive natural products from complex mixtures, improving the set of tools available for untargeted metabolomics. It can be easily integrated into natural product-based drug-discovery pipelines and to other fields of research at the interface of chemistry and biology.


Assuntos
Produtos Biológicos , Descoberta de Drogas , Metabolômica , Software , Espectrometria de Massas em Tandem , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Produtos Biológicos/análise , Cromatografia Líquida/métodos , Fluxo de Trabalho
3.
Toxicol In Vitro ; 99: 105856, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38821378

RESUMO

Acute leukemias present therapeutic challenges despite advances in treatments. Microtubule inhibitors have played a pivotal role in cancer therapy, inspiring exploration into novel compounds like C2E1 from the cyclopenta[b]indole class. In the present study, we investigated C2E1's potential as a therapeutic agent for acute leukemia at molecular, cellular, and genetic levels. C2E1 demonstrated tubulin depolarization activity, significantly reducing leukemia cell viability. Its impact involved multifaceted mechanisms: inducing apoptosis, arrest of cell cycle progression, and inhibition of clonogenicity and migration in leukemia cells. At a molecular level, C2E1 triggered DNA damage, antiproliferative, and apoptosis markers and altered gene expression related to cytoskeletal regulation, disrupting essential cellular processes crucial for leukemia cell survival and proliferation. These findings highlight C2E1's promise as a potential candidate for novel anti-cancer therapies. Notably, its distinct mode of action from conventional microtubule-targeting drugs suggests the potential to bypass common resistance mechanisms encountered with existing treatments. In summary, C2E1 emerges as a compelling compound with diverse effects on leukemia cells, showcasing promising antineoplastic properties. Its ability to disrupt critical cellular functions selective to leukemia cells positions it as a candidate for future therapeutic development.

4.
RSC Med Chem ; 15(5): 1424-1451, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38799223

RESUMO

Genome stability is governed by chromatin structural dynamics, which modify DNA accessibility under the influence of intra- and inter-nucleosomal contacts, histone post-translational modifications (PTMs) and variations, besides the activity of ATP-dependent chromatin remodelers. These are the main ways by which chromatin dynamics are regulated and connected to nuclear processes, which when dysregulated can frequently be associated with most malignancies. Recently, functional crosstalk between histone modifications and chromatin remodeling has emerged as a critical regulatory method of transcriptional regulation during cell destiny choice. Therefore, improving therapeutic outcomes for patients by focusing on epigenetic targets dysregulated in malignancies should help prevent cancer cells from developing resistance to anticancer treatments. For this reason, SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) has gained a lot of attention recently as a cancer target. SETDB1 is a histone lysine methyltransferase that plays an important role in marking euchromatic and heterochromatic regions. Hence, it promotes the silencing of tumor suppressor genes and contributes to carcinogenesis. Some studies revealed that SETDB1 was overexpressed in various human cancer types, which enhanced tumor growth and metastasis. Thus, SETDB1 appears to be an attractive epigenetic target for new cancer treatments. In this review, we have discussed the effects of its overexpression on the progression of tumors and the development of inhibitor drugs that specifically target this enzyme.

5.
Toxins (Basel) ; 16(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38668589

RESUMO

Coralsnakes (Micrurus spp.) are the only elapids found throughout the Americas. They are recognized for their highly neurotoxic venom, which is comprised of a wide variety of toxins, including the stable, low-mass toxins known as three-finger toxins (3FTx). Due to difficulties in venom extraction and availability, research on coralsnake venoms is still very limited when compared to that of other Elapidae snakes like cobras, kraits, and mambas. In this study, two previously described 3FTx from the venom of M. corallinus, NXH1 (3SOC1_MICCO), and NXH8 (3NO48_MICCO) were characterized. Using in silico, in vitro, and ex vivo experiments, the biological activities of these toxins were predicted and evaluated. The results showed that only NXH8 was capable of binding to skeletal muscle cells and modulating the activity of nAChRs in nerve-diaphragm preparations. These effects were antagonized by anti-rNXH8 or antielapidic sera. Sequence analysis revealed that the NXH1 toxin possesses eight cysteine residues and four disulfide bonds, while the NXH8 toxin has a primary structure similar to that of non-conventional 3FTx, with an additional disulfide bond on the first loop. These findings add more information related to the structural diversity present within the 3FTx class, while expanding our understanding of the mechanisms of the toxicity of this coralsnake venom and opening new perspectives for developing more effective therapeutic interventions.


Assuntos
Clonagem Molecular , Cobras Corais , Venenos Elapídicos , Músculo Esquelético , Receptores Nicotínicos , Animais , Venenos Elapídicos/química , Venenos Elapídicos/toxicidade , Venenos Elapídicos/genética , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Sequência de Aminoácidos , Masculino
6.
J Ethnopharmacol ; 329: 118154, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38614259

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: The plants of Amaryllidaceae family, such as Amaryllis belladonna L., have been used as herbal remedies for thousands of years to address various disorders, including diseases that might today be identified as cancer. AIM OF THE STUDY: The objective of this work was to evaluate the potential of three Amaryllidaceae alkaloids against four cancer cell lines. MATERIAL AND METHODS: The alkaloids lycorine, 1-O-acetylcaranine, and montanine were evaluated in vitro against colon adenocarcinoma cell line (HCT-116) and breast carcinoma cell lines (MCF-7, MDAMB231, and Hs578T). Computational experiments (target prediction and molecular docking) were conducted to gain a deeper comprehension of possible interactions between these alkaloids and potential targets associated with these tumor cells. RESULTS: Montanine presented the best results against HCT-116, MDAMB231, and Hs578T cell lines, while lycorine was the most active against MCF-7. In alignment with the target prediction outcomes and existing literature, four potential targets were chosen for the molecular docking analysis: CDK8, EGFR, ER-alpha, and dCK. The docking scores revealed two potential targets for the alkaloids with scores similar to co-crystallized inhibitors and substrates: CDK8 and dCK. A visual analysis of the optimal docked configurations indicates that the alkaloids may interact with some key residues in contrast to the other docked compounds. This observation implies their potential to bind effectively to both targets. CONCLUSIONS: In vitro and in silico results corroborate with data literature suggesting the Amaryllidaceae alkaloids as interesting molecules with antitumoral properties, especially montanine, which showed the best in vitro results against colorectal and breast carcinoma. More studies are necessary to confirm the targets and pharmaceutical potential of montanine against these cancer cell lines.


Assuntos
Alcaloides de Amaryllidaceae , Antineoplásicos Fitogênicos , Simulação de Acoplamento Molecular , Humanos , Alcaloides de Amaryllidaceae/farmacologia , Alcaloides de Amaryllidaceae/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Células MCF-7 , Amaryllidaceae/química , Células HCT116 , Simulação por Computador , Fenantridinas/farmacologia , Fenantridinas/química , Isoquinolinas
8.
Pharmaceutics ; 16(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38399285

RESUMO

Despite advances in breast cancer treatment, there remains a need for local management of noninvasive, low-grade ductal carcinoma in situ (DCIS). These focal lesions are well suited for local intraductal treatment. Intraductal administration supported target site drug retention, improved efficacy, and reduced systemic exposure. Here, we used a poly(N-isopropyl acrylamide, pNIPAM) nanoparticle delivery system loaded with cytotoxic piplartine and an MAPKAP Kinase 2 inhibitor (YARA) for this purpose. For tumor environment targeting, a collagen-binding peptide SILY (RRANAALKAGELYKSILYGSG-hydrazide) was attached to pNIPAM nanoparticles, and the nanoparticle diameter, zeta potential, drug loading, and release were assessed. The system was evaluated for cytotoxicity in a 2D cell culture and 3D spheroids. In vivo efficacy was evaluated using a chemical carcinogenesis model in female Sprague-Dawley rats. Nanoparticle delivery significantly reduced the IC50 of piplartine (4.9 times) compared to the drug in solution. The combination of piplartine and YARA in nanoparticles further reduced the piplartine IC50 (~15 times). Treatment with these nanoparticles decreased the in vivo tumor incidence (5.2 times). Notably, the concentration of piplartine in mammary glands treated with nanoparticles (35.3 ± 22.4 µg/mL) was substantially higher than in plasma (0.7 ± 0.05 µg/mL), demonstrating targeted drug retention. These results indicate that our nanocarrier system effectively reduced tumor development with low systemic exposure.

9.
Nat Microbiol ; 9(2): 336-345, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38316926

RESUMO

microbeMASST, a taxonomically informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbe-derived metabolites and relative producers without a priori knowledge will vastly enhance the understanding of microorganisms' role in ecology and human health.


Assuntos
Metabolômica , Espectrometria de Massas em Tandem , Humanos , Metabolômica/métodos , Bases de Dados Factuais
10.
Eur J Pharm Sci ; 192: 106635, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952683

RESUMO

Seriniquinone (SQ) was initially described by our group as an antimelanoma drug candidate and now also as an antifungal drug candidate. Despite its promising in vitro effects, SQ translation has been hindered by poor water-solubility. In this paper, we described the challenging nanoformulation process of SQ, which culminated in the selection of a phosphatidylcholine-based lamellar phase (PLP1). Liposomes and nanostructured lipid carriers were also evaluated but failed to encapsulate the compound. SQ-loaded PLP1 (PLP1-SQ) was characterized for the presence of sedimented or non-dissolved SQ, rheological and thermal behavior, and irritation potential with hen's egg test on the chorioallantoic membrane (HET-CAM). PLP1 influence on transepidermal water loss (TEWL) and skin penetration of SQ was assessed in a porcine ear skin model, while biological activity was evaluated against melanoma cell lines (SK-MEL-28 and SK-MEL-147) and C. albicans SC5314. Despite the presence of few particles of non-dissolved SQ (observed under the microscope 2 days after formulation obtainment), PLP1 tripled SQ retention in viable skin layers compared to SQ solution at 12 h. This effect did not seem to relate to formulation-induced changes on the barrier function, as no increases in TEWL were observed. No sign of vascular toxicity in the HET-CAM model was observed after cutaneous treatment with PLP1. SQ activity was maintained on melanoma cells after 48 h-treatment (IC50 values of 0.59-0.98 µM) whereas the minimum inhibitory concentration (MIC) against C. albicans after 24 h-treatment was 32-fold higher. These results suggest that a safe formulation for SQ topical administration was developed, enabling further in vivo studies.


Assuntos
Melanoma , Micoses , Neoplasias Cutâneas , Animais , Feminino , Suínos , Galinhas , Melanoma/metabolismo , Pele/metabolismo , Neoplasias Cutâneas/metabolismo , Candida albicans , Água/farmacologia
11.
Mar Environ Res ; 194: 106303, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38150785

RESUMO

The tropical ascidian Eudistoma vannamei, endemic to the northeastern coast of Brazil, is considered a prolific source of secondary metabolites and hosts Actinomycetota that produce bioactive compounds. Herein, we used an omics approach to study the ascidian as a holobiont, including the microbial diversity through 16S rRNA gene sequencing and metabolite production using mass spectrometry-based metabolomics. Gene sequencing analysis revealed all samples of E. vannamei shared about 50% of the observed ASVs, and Pseudomonadota (50.7%), Planctomycetota (9.58%), Actinomycetota (10.34%), Bacteroidota (12.05%) were the most abundant bacterial phyla. Analysis of tandem mass spectrometry (MS/MS) data allowed annotation of compounds, including phospholipids, amino acids, and pyrimidine alkaloids, such as staurosporine, a member of a well-known chemical class recognized as a microbial metabolite. Isolated bacteria, mainly belonging to Streptomyces and Micromonospora genera, were cultivated and extracted with ethyl acetate. MS/MS analysis of bacterial extracts allowed annotation of compounds not detected in the ascidian tissue, including marineosin and dihydroergotamine, yielding about 30% overlapped ions between host and isolated bacteria. This study reveals E. vannamei as a rich source of microbial and chemical diversity and, furthermore, highlights the importance of omic tools for a comprehensive investigation of holobiont systems.


Assuntos
Urocordados , Animais , Filogenia , RNA Ribossômico 16S/genética , Espectrometria de Massas em Tandem , Bactérias/genética
12.
Eur J Med Chem ; 263: 115935, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37989057

RESUMO

A series of hybrid inhibitors, combining pharmacophores of known kinase inhibitors bearing anilino-purines (ruxolitinib, ibrutinib) and benzohydroxamate HDAC inhibitors (nexturastat A), were generated in the present study. The compounds have been synthesized and tested against solid and hematological tumor cell lines. Compounds 4d-f were the most promising in cytotoxicity assays (IC50 ≤ 50 nM) vs. hematological cells and displayed moderate activity in solid tumor models (EC50 = 9.3-21.7 µM). Compound 4d potently inhibited multiple kinase targets of interest for anticancer effects, including JAK2, JAK3, HDAC1, and HDAC6. Molecular dynamics simulations showed that 4d has stable interactions with HDAC and members of the JAK family, with differences in the hinge binding energy conferring selectivity for JAK3 and JAK2 over JAK1. The kinase inhibition profile of compounds 4d-f allows selective cytotoxicity, with minimal effects on non-tumorigenic cells. Moreover, these compounds have favorable pharmacokinetic profiles, with high stability in human liver microsomes (e.g., see t1/2: >120 min for 4f), low intrinsic clearance, and lack of significant inhibition of four major CYP450 isoforms.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Janus Quinases , Purinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células
13.
Res Sq ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37577622

RESUMO

MicrobeMASST, a taxonomically-informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbial-derived metabolites and relative producers, without a priori knowledge, will vastly enhance the understanding of microorganisms' role in ecology and human health.

14.
Environ Toxicol Pharmacol ; 99: 104109, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36921700

RESUMO

Since the late 70s, the continuous pharmaceuticals` input into the environment has raised concerns regarding the eventual risk posed by such compounds to human and environmental health. A major group of pharmaceuticals in terms of environmental impact are the antineoplastic agents (AAs). Herein, we followed a systematic review method to retrieve antineoplastic agents (AAs') ecotoxicological information regarding freshwater species. In this analysis, data from diverse taxonomic groups, from microorganisms to vertebrate species, looked at different levels of biological organization, including cell lines. Furthermore, this review gathers ecotoxicological parameters (EC50 and LC50) for imatinib (IM), cisplatin (CisPt), and 5-fluorouracil (5-FU) in species sensitivity distribution (SSD) curves and estimates the hazard concentration (HC5) considering the protection of 95% of the ecological community. Lastly, we suggest how we can improve AAs' Environmental Risk Assessment (ERA), considering potential adoptable toxicity endpoints, test duration, AAs metabolites testing, and AAs mixture exposure.


Assuntos
Antineoplásicos , Poluentes Químicos da Água , Humanos , Antineoplásicos/toxicidade , Mesilato de Imatinib , Organismos Aquáticos , Fluoruracila/toxicidade , Água Doce/análise , Preparações Farmacêuticas , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Medição de Risco
15.
Antimicrob Agents Chemother ; 67(3): e0075922, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36815840

RESUMO

Cryptococcosis therapy is often limited by toxicity problems, antifungal tolerance, and high costs. Studies approaching chalcogen compounds, especially those containing selenium, have shown promising antifungal activity against pathogenic species. This work aimed to evaluate the in vitro and in vivo antifungal potential of organoselenium compounds against Cryptococcus neoformans. The lead compound LQA_78 had an inhibitory effect on C. neoformans planktonic cells and dispersed cells from mature biofilms at similar concentrations. The fungal growth inhibition led to an increase in budding cells arrested in the G2/M phase, but the compound did not significantly affect structural cell wall components or chitinase activity, an enzyme that regulates the dynamics of the cell wall. The compound also inhibited titan cell (Tc) and enlarged capsule yeast (NcC) growth and reduced the body diameter and capsule thickness associated with increased capsular permeability of both virulent morphotypes. LQA_78 also reduced fungal melanization through laccase activity inhibition. The fungicidal activity was observed at higher concentrations (16 to 64 µg/mL) and may be associated with augmented plasma membrane permeability, ROS production, and loss of mitochondrial membrane potential. While LQA_78 is a nonhemolytic compound, its cytotoxic effects were cell type dependent, exhibiting no toxicity on Galleria mellonella larvae at a dose ≤46.5 mg/kg. LQA_78 treatment of larvae infected with C. neoformans effectively reduced the fungal burden and inhibited virulent morphotype formation. To conclude, LQA_78 displays fungicidal action and inhibits virulence factors of C. neoformans. Our results highlight the potential use of LQA_78 as a lead molecule for developing novel pharmaceuticals for treating cryptococcosis.


Assuntos
Antifúngicos , Cryptococcus neoformans , Animais , Antifúngicos/uso terapêutico , Cryptococcus neoformans/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/microbiologia , Mariposas/efeitos dos fármacos , Mariposas/microbiologia , Fatores de Virulência/metabolismo
16.
Chem Biol Interact ; 371: 110342, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634904

RESUMO

DNA-targeting agents have a significant clinical use, although toxicity remains an issue that plays against their widespread application. Understanding the mechanism of action and DNA damage response elicited by such compounds might contribute to the improvement of their use in anticancer chemotherapy. In a previous study, our research group characterized a new DNA-targeting agent - pradimicin-IRD. Since DNA-targeting agents and DNA repair are close-related subjects, the present study used in silico-modelling and a transcriptomic approach seeking to characterize the DNA repair pathways activated in HCT 116 cells following pradimicin-IRD treatment. Molecular docking analysis showed pradimicin-IRD as a DNA intercalating agent and a potential inhibitor of DNA-binding proteins. Furthermore, the transcriptomic study highlighted DNA repair functions related to genes modulated by pradimicin-IRD, such as nucleotide excision repair, telomeres maintenance and double-strand break repair. When validating these functions, PCNA protein levels decreased after exposure to pradimicin. Furthermore, molecular docking analysis suggested DNA-pradimicin-PCNA interaction. In addition, hTERT and POLH showed reduced mRNA levels after 6 h of treatment with pradimicin-IRD. Moreover, POLH-deficient cells displayed higher resistance to pradimicin-IRD than POLH-proficient cells and the compound prevented formation of the POLH/DNA complex (molecular docking). Since the modulation of DNA repair genes by pradimicin-IRD is TP53-independent, unlike doxorubicin, dissimilarities between the mechanism of action and the DNA damage response of pradimicin-IRD and doxorubicin open new insights for further studies of pradimicin-IRD as a new antineoplastic compound.


Assuntos
Antineoplásicos , Humanos , Simulação de Acoplamento Molecular , Antígeno Nuclear de Célula em Proliferação , Antineoplásicos/farmacologia , Reparo do DNA , DNA , Doxorrubicina/farmacologia , Dano ao DNA
17.
Cancers (Basel) ; 14(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36551566

RESUMO

Despite the advances in understanding the biology of hematologic neoplasms which has resulted in the approval of new drugs, the therapeutic options are still scarce for relapsed/refractory patients. Eribulin is a unique microtubule inhibitor that is currently being used in the therapy for metastatic breast cancer and soft tissue tumors. Here, we uncover eribulin's cellular and molecular effects in a molecularly heterogeneous panel of hematologic neoplasms. Eribulin reduced cell viability and clonogenicity and promoted apoptosis and cell cycle arrest. The minimal effects of eribulin observed in the normal leukocytes suggested selectivity for malignant blood cells. In the molecular scenario, eribulin induces DNA damage and apoptosis markers. The ABCB1, ABCC1, p-AKT, p-NFκB, and NFκB levels were associated with responsiveness to eribulin in blood cancer cells, and a resistance eribulin-related target score was constructed. Combining eribulin with elacridar (a P-glycoprotein inhibitor), but not with PDTC (an NFkB inhibitor), increases eribulin-induced apoptosis in leukemia cells. In conclusion, our data indicate that eribulin leads to mitotic catastrophe and cell death in blood cancer cells. The expression and activation of MDR1, PI3K/AKT, and the NFκB-related targets may be biomarkers of the eribulin response, and the combined treatment of eribulin and elacridar may overcome drug resistance in these diseases.

18.
Life Sci ; 308: 120911, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36030982

RESUMO

AIMS: Colorectal cancer (CRC) is a very heterogeneous disease. One of its hallmarks is the dysregulation of protein kinases, which leads to molecular events related to carcinogenesis. Hence, kinase inhibitors have been developed and are a new strategy with promising potential for CRC therapy. This study aims to explore AD80, a multikinase inhibitor, as a drug option for CRC, with evaluation of the PI3K/AKT/mTOR and MAPK (ERK1/2) status of CRC cells' panel and the cytotoxicity of AD80 in those cells, as well as in normal colon cells. MAIN METHODS: Cellular and molecular mechanisms, such as clonogenicity, cell cycle, morphology, protein and mRNA expression, were investigated in CRC cells after AD80 exposure. KEY FINDINGS: Results show that PI3K/AKT/mTOR and MAPK signaling pathways are upregulated in CRC cellular models, with increased phosphorylation of mTOR, P70S6K, S6RP, 4EBP1, and ERK1/2. Hence, AD80 selectively reduces cell viability of CRC cells. Therefore, the antitumor mechanisms of AD80, such as clonogenicity inhibition (reduction of colony number and size), G2/M arrest (increased G2/M population, and CDKN1B mRNA expression), DNA damage (increased H2AX and ERK1/2 phosphorylation, and CDKN1A and GADD45A mRNA expression), apoptosis (increased PARP1 cleavage, and BAX, PMAIP1, BBC3 mRNA expression) and inhibition of S6RP phosphorylation were validated in CRC model. SIGNIFICANCE: Our findings reinforce kinases as promising cancer therapeutic targets for the treatment of colorectal cancer, suggesting AD80 as a drug candidate.


Assuntos
Neoplasias Colorretais , Proteínas Quinases S6 Ribossômicas 70-kDa , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/patologia , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Proteína X Associada a bcl-2
19.
Pharmaceutics ; 14(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36015347

RESUMO

Nature is the largest pharmacy in the world. Doxorubicin (DOX) and paclitaxel (PTX) are two examples of natural-product-derived drugs employed as first-line treatment of various cancer types due to their broad mechanisms of action. These drugs are marketed as conventional and nanotechnology-based formulations, which is quite curious since the research and development (R&D) course of nanoformulations are even more expensive and prone to failure than the conventional ones. Nonetheless, nanosystems are cost-effective and represent both novel and safer dosage forms with fewer side effects due to modification of pharmacokinetic properties and tissue targeting. In addition, nanotechnology-based drugs can contribute to dose modulation, reversion of multidrug resistance, and protection from degradation and early clearance; can influence the mechanism of action; and can enable drug administration by alternative routes and co-encapsulation of multiple active agents for combined chemotherapy. In this review, we discuss the contribution of nanotechnology as an enabling technology taking the clinical use of DOX and PTX as examples. We also present other nanoformulations approved for clinical practice containing different anticancer natural-product-derived drugs.

20.
J Nat Prod ; 85(9): 2127-2134, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36044031

RESUMO

Cyclotides are mini-proteins with potent bioactivities and outstanding potential for agricultural and pharmaceutical applications. More than 450 different plant cyclotides have been isolated from six angiosperm families. In Brazil, studies involving this class of natural products are still scarce, despite its rich floristic diversity. Herein were investigated the cyclotides from Anchietea pyrifolia roots, a South American medicinal plant from the family Violaceae. Fourteen putative cyclotides were annotated by LC-MS. Among these, three new bracelet cyclotides, anpy A-C, and the known cycloviolacins O4 (cyO4) and O17 (cyO17) were sequenced through a combination of chemical and enzymatic reactions followed by MALDI-MS/MS analysis. Their cytotoxic activity was evaluated by a cytotoxicity assay against three human cancer cell lines (colorectal carcinoma cells: HCT 116 and HCT 116 TP53-/- and breast adenocarcinoma, MCF 7). For all assays, the IC50 values of isolated compounds ranged between 0.8 and 7.3 µM. CyO17 was the most potent cyclotide for the colorectal cancer cell lines (IC50, 0.8 and 1.2 µM). Furthermore, the hemolytic activity of anpy A and B, cyO4, and cyO17 was assessed, and the cycloviolacins were the least hemolytic (HD50 > 156 µM). This work sheds light on the cytotoxic effects of the anpy cyclotides against cancer cells. Moreover, this study expands the number of cyclotides obtained to date from Brazilian plant biodiversity and adds one more genus containing these molecules to the list of the Violaceae family.


Assuntos
Produtos Biológicos , Ciclotídeos , Proteínas de Plantas , Violaceae , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Brasil , Linhagem Celular Tumoral , Ciclotídeos/química , Ciclotídeos/isolamento & purificação , Ciclotídeos/farmacologia , Humanos , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Espectrometria de Massas em Tandem , Violaceae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA