RESUMO
Recent dengue outbreaks have occurred in Ouagadougou and Bobo-Dioulasso, the two major cities of Burkina Faso. Dengue is a viral disease transmitted primarily by Aedes aegypti, a highly anthropophilic mosquito that thrives in human-transformed environments and breeds predominantly in artificial containers. In 2018, we investigated the resting and blood-feeding habits of Ae. aegypti in urban settings of Ouagadougou. In a 3-month cross-sectional study starting in August 2018, indoors and outdoors resting adult mosquitoes were collected using Prokopack aspirators in three health districts (HD). All mosquitoes were morphologically identified, and DNA was extracted from blood-fed Ae. aegypti females. A multiplex polymerase chain reaction with specific primers was used to identify the origin of the blood meal. A total of 4,256 adult Ae. aegypti mosquitoes, including 1,908 females, were collected. A preference for exophily was recorded in Bogodogo and Nongremassom, although an unexpectedly higher proportion of blood-fed females were found indoors than outdoors. Respectively, 96.09%, 91.03%, and 95.54% of the blood meals successfully analyzed in Baskuy, Bogodogo, and Nongremassom were from a single human host, with the remainder from domestic mammals as single or multiple hosts. Modeling total Ae. aegypti and blood-fed female counts showed that among other predictors, human density, outdoor environment, and house type affect their total densities. Our study revealed an exophilic tendency as well as a pronounced anthropophilic preference of Ae. aegypti adults, critical findings to consider when planning accurate entomological surveillance and effective interventions against Ae. aegypti in urban settings.
RESUMO
BACKGROUND: Since its first record in urban areas of Central-Africa in the 2000s, the invasive mosquito, Aedes albopictus, has spread throughout the region, including in remote villages in forested areas, causing outbreaks of Aedes-borne diseases, such as dengue and chikungunya. Such invasion might enhance Ae. albopictus interactions with wild animals in forest ecosystems and favor the spillover of zoonotic arboviruses to humans. The aim of this study was to monitor Ae. albopictus spread in the wildlife reserve of La Lopé National Park (Gabon), and evaluate the magnitude of the rainforest ecosystem colonization. METHODOLOGY: From 2014 to 2018, we used ovitraps, larval surveys, BG-Sentinel traps, and human landing catches along an anthropization gradient from La Lopé village to the natural forest in the Park. CONCLUSIONS: We detected Ae. albopictus in gallery forest up to 15 km away from La Lopé village. However, Ae. albopictus was significantly more abundant at anthropogenic sites than in less anthropized areas. The number of eggs laid by Ae. albopictus decreased progressively with the distance from the forest fringe up to 200m inside the forest. Our results suggested that in forest ecosystems, high Ae. albopictus density is mainly observed at interfaces between anthropized and natural forested environments. Additionally, our data suggested that Ae. albopictus may act as a bridge vector of zoonotic pathogens between wild and anthropogenic compartments.
Assuntos
Aedes , Saúde Única , Animais , Humanos , Gabão , Ecossistema , Mosquitos Vetores , Florestas , Animais SelvagensRESUMO
Species distributed across heterogeneous environments often evolve locally adapted ecotypes, but understanding of the genetic mechanisms involved in their formation and maintenance in the face of gene flow is incomplete. In Burkina Faso, the major African malaria mosquito Anopheles funestus comprises two strictly sympatric and morphologically indistinguishable yet karyotypically differentiated forms reported to differ in ecology and behavior. However, knowledge of the genetic basis and environmental determinants of An. funestus diversification was impeded by lack of modern genomic resources. Here, we applied deep whole-genome sequencing and analysis to test the hypothesis that these two forms are ecotypes differentially adapted to breeding in natural swamps versus irrigated rice fields. We demonstrate genome-wide differentiation despite extensive microsympatry, synchronicity, and ongoing hybridization. Demographic inference supports a split only ~1,300 y ago, closely following the massive expansion of domesticated African rice cultivation ~1,850 y ago. Regions of highest divergence, concentrated in chromosomal inversions, were under selection during lineage splitting, consistent with local adaptation. The origin of nearly all variations implicated in adaptation, including chromosomal inversions, substantially predates the ecotype split, suggesting that rapid adaptation was fueled mainly by standing genetic variation. Sharp inversion frequency differences likely facilitated adaptive divergence between ecotypes by suppressing recombination between opposing chromosomal orientations of the two ecotypes, while permitting free recombination within the structurally monomorphic rice ecotype. Our results align with growing evidence from diverse taxa that rapid ecological diversification can arise from evolutionarily old structural genetic variants that modify genetic recombination.
Assuntos
Anopheles , Malária , Oryza , Animais , Inversão Cromossômica , Ecótipo , Melhoramento Vegetal , Anopheles/genética , Oryza/genéticaAssuntos
Malária , Controle de Mosquitos , Humanos , Malária/prevenção & controle , Malária/transmissãoRESUMO
Malaria control interventions target nocturnal feeding of the Anopheles vectors indoors to reduce parasite transmission. Mass deployment of insecticidal bed nets and indoor residual spraying with insecticides, however, may induce mosquitoes to blood-feed at places and at times when humans are not protected. These changes can set a ceiling to the efficacy of these control interventions, resulting in residual malaria transmission. Despite its relevance for disease transmission, the daily rhythmicity of Anopheles biting behavior is poorly documented, most investigations focusing on crepuscular hours and nighttime. By performing mosquito collections 48-h around the clock, both indoors and outdoors, and by modeling biting events using circular statistics, we evaluated the full daily rhythmicity of biting in urban Bangui, Central African Republic. While the bulk of biting by Anopheles gambiae, Anopheles coluzzii, Anopheles funestus, and Anopheles pharoensis occurred from sunset to sunrise outdoors, unexpectedly â¼20 to 30% of indoor biting occurred during daytime. As biting events did not fully conform to any family of circular distributions, we fitted mixtures of von Mises distributions and found that observations were consistent with three compartments, corresponding indoors to populations of early-night, late-night, and daytime-biting events. It is not known whether these populations of biting events correspond to spatiotemporal heterogeneities or also to distinct mosquito genotypes/phenotypes belonging consistently to each compartment. Prevalence of Plasmodium falciparum in nighttime- and daytime-biting mosquitoes was the same. As >50% of biting occurs in Bangui when people are unprotected, malaria control interventions outside the domiciliary environment should be envisaged.
Assuntos
Anopheles , Ritmo Circadiano , Comportamento Alimentar , Mordeduras e Picadas de Insetos , Malária , Controle de Mosquitos , Animais , Anopheles/parasitologia , Anopheles/fisiologia , República Centro-Africana , Humanos , Mordeduras e Picadas de Insetos/parasitologia , Malária/prevenção & controle , Malária/transmissão , Controle de Mosquitos/métodos , Mosquitos Vetores , Plasmodium falciparum/isolamento & purificaçãoRESUMO
BACKGROUND: Behavioural shifts in the canonical location and timing of biting have been reported in natural populations of anopheline malaria vectors following the implementation of insecticide-based indoor vector control interventions. These modifications increase the likelihood of human-vector contact and allow mosquitoes to avoid insecticides, both conditions being favourable to residual transmission of the malarial parasites. The biting behaviour of mosquitoes follows rhythms that are under the control of biological clocks and environmental conditions, modulated by physiological states. In this work we explore modifications of spontaneous locomotor activity expressed by mosquitoes in different physiological states to highlight phenotypic variability associated to circadian control that may contribute to explain residual transmission in the field. METHODS: The F10 generation progeny of field-collected Anopheles coluzzii from southwestern Burkina Faso was tested using an automated recording apparatus (Locomotor Activity Monitor, TriKinetics Inc.) under LD 12:12 or DD light regimens in laboratory-controlled conditions. Activity recordings of each test were carried out for a week with 6-day-old females belonging to four experimental treatments, representing factorial combinations of two physiological variables: insemination status (virgin vs inseminated) and gonotrophic status (glucose fed vs blood fed). Chronobiological features of rhythmicity in locomotor activity were explored using periodograms, diversity indices, and generalized linear mixed modelling. RESULTS: The average strength of activity, onset of activity, and acrophase were modulated by both nutritional and insemination status as well as by the light regimen. Inseminated females showed a significant excess of arrhythmic activity under DD. When rhythmicity was observed in DD, females displayed sustained activity also during the subjective day. CONCLUSIONS: Insemination and gonotrophic status influence the underlying light and circadian control of chronobiological features of locomotor activity. Overrepresentation of arrhythmic chronotypes as well as the sustained activity of inseminated females during the subjective day under DD conditions suggests potential activity of natural populations of A. coluzzii during daytime under dim conditions, with implications for residual transmission of malarial parasites.
Assuntos
Anopheles/fisiologia , Sangue/metabolismo , Comportamento Alimentar , Inseminação , Locomoção , Mosquitos Vetores/fisiologia , Animais , Anopheles/classificação , Burkina Faso , Relógios Circadianos , Feminino , Malária/parasitologia , Malária/transmissão , Controle de Mosquitos/métodos , Mosquitos Vetores/parasitologiaRESUMO
In Central Africa, the malaria vector Anopheles coluzzii is predominant in urban and coastal habitats. However, little is known about the environmental factors that may be involved in this process. Here, we performed an analysis of 28 physicochemical characteristics of 59 breeding sites across 5 urban and rural sites in coastal areas of Central Africa. We then modelled the relative frequency of An. coluzzii larvae to these physicochemical parameters in order to investigate environmental patterns. Then, we assessed the expression variation of 10 candidate genes in An. coluzzii, previously incriminated with insecticide resistance and osmoregulation in urban settings. Our results confirmed the ecological plasticity of An. coluzzii larvae to breed in a large range of aquatic conditions and its predominance in breeding sites rich in ions. Gene expression patterns were comparable between urban and rural habitats, suggesting a broad response to ions concentrations of whatever origin. Altogether, An. coluzzii exhibits a plastic response to occupy both coastal and urban habitats. This entails important consequences for malaria control in the context of the rapid urban expansion in Africa in the coming years.
Assuntos
Anopheles/genética , Ecossistema , Larva/genética , África Central , Animais , Anopheles/efeitos dos fármacos , Anopheles/fisiologia , Fenômenos Químicos , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Íons , Larva/efeitos dos fármacos , Larva/fisiologia , Malária/prevenção & controle , Controle de Mosquitos , Mosquitos Vetores/genética , OsmorregulaçãoRESUMO
BACKGROUND: Genotyping of polymorphic chromosomal inversions in malaria vectors such as An. coluzzii Coetzee & Wilkerson is important, both because they cause cryptic population structure that can mislead vector analysis and control and because they influence epidemiologically relevant eco-phenotypes. The conventional cytogenetic method of genotyping is an impediment because it is labor intensive, requires specialized training, and can be applied only to one gender and developmental stage. Here, we circumvent these limitations by developing a simple and rapid molecular method of genotyping inversion 2Rc in An. coluzzii that is both economical and field-friendly. This inversion is strongly implicated in temporal and spatial adaptations to climatic and ecological variation, particularly aridity. METHODS: Using a set of tag single-nucleotide polymorphisms (SNPs) strongly correlated with inversion orientation, we identified those that overlapped restriction enzyme recognition sites and developed four polymerase chain reaction (PCR) restriction fragment length polymorphism (RFLP) assays that distinguish alternative allelic states at the tag SNPs. We assessed the performance of these assays using mosquito population samples from Burkina Faso that had been cytogenetically karyotyped as well as genotyped, using two complementary high-throughput molecular methods based on tag SNPs. Further validation was performed using mosquito population samples from additional West African (Benin, Mali, Senegal) and Central African (Cameroon) countries. RESULTS: Of four assays tested, two were concordant with the 2Rc cytogenetic karyotype > 90% of the time in all samples. We recommend that these two assays be employed in tandem for reliable genotyping. By accepting only those genotypic assignments where both assays agree, > 99% of assignments are expected to be accurate. CONCLUSIONS: We have developed tandem PCR-RFLP assays for the accurate genotyping of inversion 2Rc in An. coluzzii. Because this approach is simple, inexpensive, and requires only basic molecular biology equipment, it is widely accessible. These provide a crucial tool for probing the molecular basis of eco-phenotypes relevant to malaria epidemiology and vector control.
Assuntos
Anopheles/classificação , Anopheles/genética , Inversão Cromossômica , Genótipo , Técnicas de Genotipagem/métodos , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Fragmento de Restrição , Animais , Burkina Faso , Resistência a Inseticidas/genética , Mosquitos Vetores/classificação , Mosquitos Vetores/genética , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Polymorphic chromosomal inversions have been implicated in local adaptation. In anopheline mosquitoes, inversions also contribute to epidemiologically relevant phenotypes such as resting behavior. Progress in understanding these phenotypes and their mechanistic basis has been hindered because the only available method for inversion genotyping relies on traditional cytogenetic karyotyping, a rate-limiting and technically difficult approach that is possible only for the fraction of the adult female population at the correct gonotrophic stage. Here, we focus on an understudied malaria vector of major importance in sub-Saharan Africa, Anopheles funestus. We ascertain and validate tag single nucleotide polymorphisms (SNPs) using high throughput molecular assays that allow rapid inversion genotyping of the three most common An. funestus inversions at scale, overcoming the cytogenetic karyotyping barrier. These same inversions are the only available markers for distinguishing two An. funestus ecotypes that differ in indoor resting behavior, Folonzo and Kiribina. Our new inversion genotyping tools will facilitate studies of ecotypic differentiation in An. funestus and provide a means to improve our understanding of the roles of Folonzo and Kiribina in malaria transmission.
RESUMO
BACKGROUND: Anopheles multicolor is known to be present in the arid areas of Africa north of the Sahara Desert, especially in oases. To date, its presence in Mauritania has not been reported. Here, we present the first record of its presence in Nouakchott, the capital of Mauritania. The larvae of An. multicolor, together with those of An. arabiensis, the major malaria vector in the city, were found thriving in highly saline surface water collections. METHODS: Entomological surveys were carried out during 2016-2017 in Nouakchott. Mosquito larval habitats were investigated through larval surveys while indoor resting culicid fauna were collected using hand-held aspirator. Physicochemical parameters of the larval habitats were measured on-site, at the time mosquitoes were collected. Larvae and pupae were reared to adults in the insectaries. Morphological and polymerase chain reaction (PCR)-based methods were used to identify newly emerged adults. Batches of fourth-instar larvae were used to assess salinity tolerance by exposing them to increasing concentrations of NaCl, and mortality was monitored throughout development. RESULTS: Morphological and molecular results confirmed that the specimens were An. multicolor and An. arabiensis. Sequences of 24 An. multicolor adult mosquitoes showed 100% nucleotide identity with the published sequences of An. multicolor from Iran. The physicochemical analysis of the water from the two larval habitats revealed highly saline conditions, with NaCl content ranging between 16.8 and 28.9 g/l (i.e. between c.50-80% seawater). Anopheles multicolor and An. arabiensis fourth-instar larvae survival rates at 17.5 g/l NaCl were 86.5% and 75%, respectively. Anopheles arabiensis larvae showed variable levels of salt tolerance according to the larval habitat. Adult An. multicolor specimens were collected resting indoor at low frequency (0.7%) compared to the other culicid mosquitoes. CONCLUSIONS: To the best of our knowledge, this paper is the first report of An. multicolor in Mauritania, extending the known distributional range of the species to the south, as well as to the west. Highly salt-tolerant populations of An. arabiensis and An. multicolor were observed. Because salt-water collections are widespread in Nouakchott, the relevance of these findings for the dynamics and epidemiology of malaria transmission needs to be assessed.
Assuntos
Anopheles/fisiologia , Malária/epidemiologia , Mosquitos Vetores/fisiologia , Animais , Anopheles/genética , Anopheles/parasitologia , Ecossistema , Feminino , Larva , Malária/parasitologia , Mauritânia/epidemiologia , Mosquitos Vetores/genética , Mosquitos Vetores/parasitologia , SalinidadeRESUMO
Chromosomal inversion polymorphisms have special importance in the Anopheles gambiae complex of malaria vector mosquitoes, due to their role in local adaptation and range expansion. The study of inversions in natural populations is reliant on polytene chromosome analysis by expert cytogeneticists, a process that is limited by the rarity of trained specialists, low throughput, and restrictive sampling requirements. To overcome this barrier, we ascertained tag single nucleotide polymorphisms (SNPs) that are highly correlated with inversion status (inverted or standard orientation). We compared the performance of the tag SNPs using two alternative high throughput molecular genotyping approaches vs. traditional cytogenetic karyotyping of the same 960 individual An. gambiae and An. coluzzii mosquitoes sampled from Burkina Faso, West Africa. We show that both molecular approaches yield comparable results, and that either one performs as well or better than cytogenetics in terms of genotyping accuracy. Given the ability of molecular genotyping approaches to be conducted at scale and at relatively low cost without restriction on mosquito sex or developmental stage, molecular genotyping via tag SNPs has the potential to revitalize research into the role of chromosomal inversions in the behavior and ongoing adaptation of An. gambiae and An. coluzzii to environmental heterogeneities.
Assuntos
Anopheles , Malária , África Ocidental , Animais , Anopheles/genética , Inversão Cromossômica , Genótipo , Mosquitos VetoresRESUMO
BACKGROUND AND AIMS: Oaks are the foundation and dominant tree species of most Mediterranean forests. As climate models predict dramatic changes in the Mediterranean basin, a better understanding of the ecophysiology of seed persistence and germination in oaks could help define their regeneration niches. Tunisian oaks occupy distinct geographical areas, which differ in their rainfall and temperature regimes, and are thus a valuable model to investigate relationships between seed traits and species ecological requirements. METHODS: Seed morphological traits, desiccation sensitivity level, lethal freezing temperature, embryonic axis and cotyledon sugar and lipid composition, and seed and acorn germination rates at various constant temperatures were measured in Quercus canariensis, Q. coccifera, Q. ilex and Q. suber, using seeds sampled in 22 Tunisian woodlands. KEY RESULTS: Only faint differences were observed for desiccation sensitivity in the oak species studied. By contrast, the species differed significantly in sensitivity to freezing, germination rates at low temperature and base temperature. Quercus ilex and Q. canariensis, which occur at high elevations where frost events are frequent, showed the lowest freezing sensitivity. A significant correlation was found between hexose contents in the embryonic axis and freezing tolerance. Significant interspecific differences in the time for seeds to germinate and the time for the radicle to pierce the pericarp were observed. The ratio of pericarp mass to acorn mass differed significantly among the species and was negatively correlated with the acorn germination rate. Quercus coccifera, which is frequent in warm and arid environments, showed the highest acorn germination rate and synchrony. CONCLUSIONS: Seed lethal temperature, seed germination time at low temperatures, the ratio of pericarp mass to acorn mass and the embryonic axis hexose content appeared to be key functional traits that may influence the geographical ranges and ecological requirements of Mediterranean oaks in Tunisia.
Assuntos
Quercus , Germinação , Sementes , Árvores , TunísiaRESUMO
Complexes of closely related species provide key insights into the rapid and independent evolution of adaptive traits. Here, we described and studied Anopheles fontenillei sp.n., a new species in the Anopheles gambiae complex that we recently discovered in the forested areas of Gabon, Central Africa. Our analysis placed the new taxon in the phylogenetic tree of the An. gambiae complex, revealing important introgression events with other members of the complex. Particularly, we detected recent introgression, with Anopheles gambiae and Anopheles coluzzii, of genes directly involved in vectorial capacity. Moreover, genome analysis of the new species allowed us to clarify the evolutionary history of the 3La inversion. Overall, An. fontenillei sp.n. analysis improved our understanding of the relationship between species within the An. gambiae complex, and provided insight into the evolution of vectorial capacity traits that are relevant for the successful control of malaria in Africa.
Assuntos
Anopheles/genética , Malária/transmissão , Mosquitos Vetores/genética , Animais , Evolução Biológica , Evolução Molecular , Feminino , Gabão/epidemiologia , Genoma de Inseto , Humanos , Malária/epidemiologia , FilogeniaRESUMO
During the last decade, the endosymbiont bacterium Wolbachia has emerged as a biological tool for vector disease control. However, for long time, it was believed that Wolbachia was absent in natural populations of Anopheles. The recent discovery that species within the Anopheles gambiae complex host Wolbachia in natural conditions has opened new opportunities for malaria control research in Africa. Here, we investigated the prevalence and diversity of Wolbachia infection in 25 African Anopheles species in Gabon (Central Africa). Our results revealed the presence of Wolbachia in 16 of these species, including the major malaria vectors in this area. The infection prevalence varied greatly among species, confirming that sample size is a key factor to detect the infection. Moreover, our sequencing and phylogenetic analyses showed the important diversity of Wolbachia strains that infect Anopheles. Co-evolutionary analysis unveiled patterns of Wolbachia transmission within some Anopheles species, suggesting that past independent acquisition events were followed by co-cladogenesis. The large diversity of Wolbachia strains that infect natural populations of Anopheles offers a promising opportunity to select suitable phenotypes for suppressing Plasmodium transmission and/or manipulating Anopheles reproduction, which in turn could be used to reduce the malaria burden in Africa.
RESUMO
Inversion polymorphisms are responsible for many ecologically important phenotypes and are often found under balancing selection. However, the same features that ensure their large role in local adaptation-especially reduced recombination between alternate arrangements-mean that uncovering the precise loci within inversions that control these phenotypes is unachievable using standard mapping approaches. Here, we take advantage of long-term balancing selection on a pair of inversions in the mosquito Anopheles gambiae to map desiccation tolerance via pool-GWAS. Two polymorphic inversions on chromosome 2 of this species (denoted 2La and 2Rb) are associated with arid and hot conditions in Africa and are maintained in spatially and temporally heterogeneous environments. After measuring thousands of wild-caught individuals for survival under desiccation stress, we used phenotypically extreme individuals homozygous for alternative arrangements at the 2La inversion to construct pools for whole-genome sequencing. Genomewide association mapping using these pools revealed dozens of significant SNPs within both 2La and 2Rb, many of which neighboured genes controlling ion channels or related functions. Our results point to the promise of similar approaches in systems with inversions maintained by balancing selection and provide a list of candidate genes underlying the specific phenotypes controlled by the two inversions studied here.
Assuntos
Adaptação Fisiológica/genética , Anopheles/genética , Inversão Cromossômica/genética , Malária/genética , Aclimatação/genética , África , Animais , Anopheles/patogenicidade , Ecossistema , Humanos , Malária/transmissão , Mosquitos Vetores/genéticaRESUMO
Explaining how and why reproductive isolation evolves and determining which forms of reproductive isolation have the largest impact on the process of population divergence are major goals in the study of speciation. By studying recent adaptive radiations in incompletely isolated taxa, it is possible to identify barriers involved at early divergence before other confounding barriers emerge after speciation is complete. Sibling species of the Anopheles gambiae complex offer opportunities to provide insights into speciation mechanisms. Here, we studied patterns of reproductive isolation among three taxa, Anopheles coluzzii, An. gambiae s.s. and Anopheles arabiensis, to compare its strength at different spatial scales, to dissect the relative contribution of pre- versus postmating isolation, and to infer the involvement of ecological divergence on hybridization. Because F1 hybrids are viable, fertile and not uncommon, understanding the dynamics of hybridization in this trio of major malaria vectors has important implications for how adaptations arise and spread across the group, and in planning studies of the safety and efficacy of gene drive as a means of malaria control. We first performed a systematic review and meta-analysis of published surveys reporting on hybrid prevalence, showing strong reproductive isolation at a continental scale despite geographically restricted exceptions. Second, we exploited our own extensive field data sets collected at a regional scale in two contrasting environmental settings, to assess: (i) levels of premating isolation; (ii) spatio/temporal and frequency-dependent dynamics of hybridization, (iii) relationship between reproductive isolation and ecological divergence and (iv) hybrid viability penalty. Results are in accordance with ecological speciation theory predicting a positive association between the strength of reproductive isolation and degree of ecological divergence, and indicate that postmating isolation does contribute to reproductive isolation among these species. Specifically, only postmating isolation was positively associated with ecological divergence, whereas premating isolation was correlated with phylogenetic distance.
RESUMO
Most emerging infectious diseases are zoonoses originating from wildlife among which vector-borne diseases constitute a major risk for global human health. Understanding the transmission routes of mosquito-borne pathogens in wildlife crucially depends on recording mosquito blood-feeding patterns. During an extensive longitudinal survey to study sylvatic anophelines in two wildlife reserves in Gabon, we collected 2,415 mosquitoes of which only 0.3% were blood-fed. The molecular analysis of the blood meals contained in guts indicated that all the engorged mosquitoes fed on wild ungulates. This direct approach gave only limited insights into the trophic behavior of the captured mosquitoes. Therefore, we developed a complementary indirect approach that exploits the occurrence of natural infections by host-specific haemosporidian parasites to infer Anopheles trophic behavior. This method showed that 74 infected individuals carried parasites of great apes (58%), ungulates (30%), rodents (11%) and bats (1%). Accordingly, on the basis of haemosporidian host specificity, we could infer different feeding patterns. Some mosquito species had a restricted host range (An. nili only fed on rodents, whereas An. carnevalei, An. coustani, An. obscurus, and An. paludis only fed on wild ungulates). Other species had a wider host range (An. gabonensis could feed on rodents and wild ungulates, whereas An. moucheti and An. vinckei bit rodents, wild ungulates and great apes). An. marshallii was the species with the largest host range (rodents, wild ungulates, great apes, and bats). The indirect method substantially increased the information that could be extracted from the sample by providing details about host-feeding patterns of all the mosquito species collected (both fed and unfed). Molecular sequences of hematophagous arthropods and their parasites will be increasingly available in the future; exploitation of such data with the approach we propose here should provide key insights into the feeding patterns of vectors and the ecology of vector-borne diseases.
RESUMO
Whether malaria parasites can manipulate mosquito host choice in ways that enhance parasite transmission toward suitable hosts and/or reduce mosquito attraction to unsuitable hosts (i.e. specific manipulation) is unknown. To address this question, we experimentally infected three species of mosquito vectors with wild isolates of the human malaria parasite Plasmodium falciparum, and examined the effects of immature and mature infections on mosquito behavioural responses to combinations of calf odour, human odour and outdoor air using a dual-port olfactometer. Regardless of parasite developmental stage and mosquito species, P. falciparum infection did not alter mosquito activation rate or their choice for human odours. The overall expression pattern of host choice of all three mosquito species was consistent with a high degree of anthropophily, with infected and uninfected individuals showing higher attraction toward human odour over calf odour, human odour over outdoor air, and outdoor air over calf odour. Our results suggest that, in this system, the parasite may not be able to manipulate the early long-range behavioural steps involved in the mosquito host-feeding process. Future studies are required to test whether malaria parasites can modify their mosquito host choice at a shorter range to enhance transmission.
Assuntos
Anopheles/parasitologia , Comportamento Apetitivo/fisiologia , Interações Hospedeiro-Parasita , Plasmodium falciparum , Animais , Anopheles/fisiologia , Bovinos , Comportamento de Escolha/fisiologia , Humanos , Mosquitos Vetores/parasitologia , Mosquitos Vetores/fisiologia , OdorantesRESUMO
Chromosome inversions have fascinated the scientific community, mainly because of their role in the rapid adaption of different taxa to changing environments. However, the ecological traits linked to chromosome inversions have been poorly studied. Here, we investigated the roles played by 23 chromosome inversions in the adaptation of the four major African malaria mosquitoes to local environments in Africa. We studied their distribution patterns by using spatially explicit modeling and characterized the ecogeographical determinants of each inversion range. We then performed hierarchical clustering and constrained ordination analyses to assess the spatial and ecological similarities among inversions. Our results show that most inversions are environmentally structured, suggesting that they are actively involved in processes of local adaptation. Some inversions exhibited similar geographical patterns and ecological requirements among the four mosquito species, providing evidence for parallel evolution. Conversely, common inversion polymorphisms between sibling species displayed divergent ecological patterns, suggesting that they might have a different adaptive role in each species. These results are in agreement with the finding that chromosomal inversions play a role in Anopheles ecotypic adaptation. This study establishes a strong ecological basis for future genome-based analyses to elucidate the genetic mechanisms of local adaptation in these four mosquitoes.
Assuntos
Anopheles/genética , Inversão Cromossômica , Mosquitos Vetores/genética , Polimorfismo Genético , África Central , África Ocidental , Animais , Meio Ambiente , Evolução Molecular , Feminino , Cariótipo , Malária , Modelos GenéticosRESUMO
BACKGROUND: There are limited contemporary data on the safety and efficacy of echocardiography-guided pericardiocentesis in Italy. The aim of the study was to evaluate safety and efficacy of pericardiocentesis, performed with non-continuous echocardiography monitoring. All the procedures performed at Department of Cardiovascular Disease, Ospedali Riuniti Ancona, from January 2001 to June 2013, were retrospectively analyzed to determine risks connected to the procedure and its success rate. Epidemiological data, procedure indications and etiology of the effusions were also recorded. METHODS: In the study period, 478 pericardiocentesis were performed for cardiac tamponade (N.=161), to remove large amount of fluid (N.=215) or for diagnostic purposes (N.=102). Echocardiographic evaluation, performed just before the procedure, was used to define the site of entry, to measure the distance from the skin to the fluid, and to establish how to direct the needle. RESULTS: We observed an extremely low rate of complications (<1%), without any death. The procedure was fully successful in 98% of cases and achieved only partial fluid removal in the remained 10 patients. The etiology of the effusion was malignancy or post cardiothoracic surgery in almost 60% of cases. Over the years there was an increase of pericardiocentesis performed after a cardiothoracic surgery (P=0.002); There was a significant reduction of the average amount of drained fluid in the years 2010-2013 vs. the period 2001-2009. CONCLUSIONS: Echocardiography-guided pericardiocentesis is an effective and safe procedure, with a low rate of complications.