Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Vis Exp ; (203)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38345230

RESUMO

Despite the numerous clearing techniques that emerged in the last decade, processing postmortem human brains remains a challenging task due to its dimensions and complexity, which make imaging with micrometer resolution particularly difficult. This paper presents a protocol to perform the reconstruction of volumetric portions of the human brain by simultaneously processing tens of sections with the SHORT (SWITCH - H2O2 - Antigen Retrieval - 2,2'-thiodiethanol [TDE]) tissue transformation protocol, which enables clearing, labeling, and sequential imaging of the samples with light-sheet fluorescence microscopy (LSFM). SHORT provides rapid tissue clearing and homogeneous multi-labeling of thick slices with several neuronal markers, enabling the identification of different neuronal subpopulations in both white and grey matter. After clearing, the slices are imaged via LSFM with micrometer resolution and in multiple channels simultaneously for a rapid 3D reconstruction. By combining SHORT with LSFM analysis within a routinely high-throughput protocol, it is possible to obtain the 3D cytoarchitecture reconstruction of large volumetric areas at high resolution in a short time, thus enabling comprehensive structural characterization of the human brain.


Assuntos
Encéfalo , Peróxido de Hidrogênio , Humanos , Microscopia de Fluorescência/métodos , Encéfalo/diagnóstico por imagem , Neurônios , Neuroimagem/métodos , Imageamento Tridimensional , Imagem Óptica/métodos
2.
Sci Total Environ ; 912: 169362, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38128669

RESUMO

Scientific research on the impact of microplastics (MPs) in terrestrial systems is still emerging, but it has confirmed adverse health effects in organisms exposed to plastics. Although recent studies have shown the toxicological effects of individual MPs polymers on honey bees, the effects of different polymer combinations on cognitive and behavioural performance remain unknown. To fill this knowledge gap, we investigated the effects of oral exposure to spherical MPs on cognitive performance and brain accumulation in the honey bee Apis mellifera. We evaluated the acute toxicity, after a two-day exposure, of polystyrene (PS - 4.8-5.8 µm) and plexiglass (Poly(methyl methacrylate), or PMMA - 1-40 µm) MPs, and a combination of the two (MIX), at two environmentally relevant and one higher concentration (0.5, 5 and 50 mg L-1) and analysed their effects on sucrose responsiveness and appetitive olfactory learning and memory. We also used fluorescent thermoset amino formaldehyde MPs (1-5 µm) to explore whether microspheres of this diameter could penetrate the insect blood-brain barrier (BBB), using Two-Photon Fluorescence Microscopy (TPFM) in combination with an optimized version of the DISCO clearing technique. The results showed that PS reduced sucrose responsiveness, while PMMA had no significant effect; however, the combination had a marked negative effect on sucrose responsiveness. PMMA, PS, and MIX impaired bee learning and memory in bees, with PS showing the most severe effects. 3D brain imaging analysis using TFPM showed that 1-5 µm MPs penetrated and accumulated in the brain after only three days of oral exposure. These results raise concerns about the potential mechanical, cellular, and biochemical damage that MPs may cause to the central nervous system.


Assuntos
Microplásticos , Plásticos , Abelhas , Animais , Microplásticos/toxicidade , Plásticos/toxicidade , Polimetil Metacrilato , Poliestirenos , Encéfalo , Cognição , Sacarose
3.
bioRxiv ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38106176

RESUMO

Accurate labeling of specific layers in the human cerebral cortex is crucial for advancing our understanding of neurodevelopmental and neurodegenerative disorders. Leveraging recent advancements in ultra-high resolution ex vivo MRI, we present a novel semi-supervised segmentation model capable of identifying supragranular and infragranular layers in ex vivo MRI with unprecedented precision. On a dataset consisting of 17 whole-hemisphere ex vivo scans at 120 µm, we propose a multi-resolution U-Nets framework (MUS) that integrates global and local structural information, achieving reliable segmentation maps of the entire hemisphere, with Dice scores over 0.8 for supra- and infragranular layers. This enables surface modeling, atlas construction, anomaly detection in disease states, and cross-modality validation, while also paving the way for finer layer segmentation. Our approach offers a powerful tool for comprehensive neuroanatomical investigations and holds promise for advancing our mechanistic understanding of progression of neurodegenerative diseases.

4.
Sci Adv ; 9(41): eadg3844, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824623

RESUMO

Brain cells are arranged in laminar, nuclear, or columnar structures, spanning a range of scales. Here, we construct a reliable cell census in the frontal lobe of human cerebral cortex at micrometer resolution in a magnetic resonance imaging (MRI)-referenced system using innovative imaging and analysis methodologies. MRI establishes a macroscopic reference coordinate system of laminar and cytoarchitectural boundaries. Cell counting is obtained with a digital stereological approach on the 3D reconstruction at cellular resolution from a custom-made inverted confocal light-sheet fluorescence microscope (LSFM). Mesoscale optical coherence tomography enables the registration of the distorted histological cell typing obtained with LSFM to the MRI-based atlas coordinate system. The outcome is an integrated high-resolution cellular census of Broca's area in a human postmortem specimen, within a whole-brain reference space atlas.


Assuntos
Área de Broca , Córtex Cerebral , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico
5.
Cell Rep ; 42(8): 112908, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516963

RESUMO

Fear responses are functionally adaptive behaviors that are strengthened as memories. Indeed, detailed knowledge of the neural circuitry modulating fear memory could be the turning point for the comprehension of this emotion and its pathological states. A comprehensive understanding of the circuits mediating memory encoding, consolidation, and retrieval presents the fundamental technological challenge of analyzing activity in the entire brain with single-neuron resolution. In this context, we develop the brain-wide neuron quantification toolkit (BRANT) for mapping whole-brain neuronal activation at micron-scale resolution, combining tissue clearing, high-resolution light-sheet microscopy, and automated image analysis. The robustness and scalability of this method allow us to quantify the evolution of activity patterns across multiple phases of memory in mice. This approach highlights a strong sexual dimorphism in recruited circuits, which has no counterpart in the behavior. The methodology presented here paves the way for a comprehensive characterization of the evolution of fear memory.


Assuntos
Encéfalo , Caracteres Sexuais , Camundongos , Animais , Encéfalo/fisiologia , Medo/fisiologia , Neurônios/fisiologia
6.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37047724

RESUMO

The analysis of histological alterations in all types of tissue is of primary importance in pathology for highly accurate and robust diagnosis. Recent advances in tissue clearing and fluorescence microscopy made the study of the anatomy of biological tissue possible in three dimensions. The combination of these techniques with classical hematoxylin and eosin (H&E) staining has led to the birth of three-dimensional (3D) histology. Here, we present an overview of the state-of-the-art methods, highlighting the optimal combinations of different clearing methods and advanced fluorescence microscopy techniques for the investigation of all types of biological tissues. We employed fluorescence nuclear and eosin Y staining that enabled us to obtain hematoxylin and eosin pseudo-coloring comparable with the gold standard H&E analysis. The computational reconstructions obtained with 3D optical imaging can be analyzed by a pathologist without any specific training in volumetric microscopy, paving the way for new biomedical applications in clinical pathology.


Assuntos
Imageamento Tridimensional , Hematoxilina , Amarelo de Eosina-(YS) , Microscopia de Fluorescência/métodos , Coloração e Rotulagem , Imageamento Tridimensional/métodos , Microscopia Confocal
7.
Sci Rep ; 13(1): 4160, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914673

RESUMO

Fluorescence microscopy can be exploited for evaluating the brain's fiber architecture with unsurpassed spatial resolution in combination with different tissue preparation and staining protocols. Differently from state-of-the-art polarimetry-based neuroimaging modalities, the quantification of fiber tract orientations from fluorescence microscopy volume images entails the application of specific image processing techniques, such as Fourier or structure tensor analysis. These, however, may lead to unreliable outcomes as they do not isolate myelinated fibers from the surrounding tissue. In this work, we describe a novel image processing pipeline that enables the computation of accurate 3D fiber orientation maps from both grey and white matter regions, exploiting the selective multiscale enhancement of tubular structures of varying diameters provided by a 3D implementation of the Frangi filter. The developed software tool can efficiently generate orientation distribution function maps at arbitrary spatial scales which may support the histological validation of modern diffusion-weighted magnetic resonance imaging tractography. Despite being tested here on two-photon scanning fluorescence microscopy images, acquired from tissue samples treated with a label-free technique enhancing the autofluorescence of myelinated fibers, the presented pipeline was developed to be employed on all types of 3D fluorescence images and fiber staining.


Assuntos
Algoritmos , Encéfalo , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Microscopia de Fluorescência
8.
Methods Mol Biol ; 2566: 345-353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152265

RESUMO

The microscopic visualization of nanoparticles in plants is crucial to elucidate the mechanisms of their uptake through the cell wall and plasma membrane and to localize the possible sites of their extracellular or intracellular accumulation. Lignin nanocarriers are polymeric hollow nanocapsules able to contain and transport several bioactive substances inside plant tissues. We describe here a method for the preparation of Fluorol Yellow 088-labeled lignin nanocapsules that allow their localization in plant organs and tissues by fluorescence microscopy.


Assuntos
Nanocápsulas , Lignina/metabolismo , Microscopia de Fluorescência , Xantenos
10.
Commun Biol ; 5(1): 447, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551498

RESUMO

The combination of optical tissue transparency with immunofluorescence allows the molecular characterization of biological tissues in 3D. However, adult human organs are particularly challenging to become transparent because of the autofluorescence contributions of aged tissues. To meet this challenge, we optimized SHORT (SWITCH-H2O2-antigen Retrieval-TDE), a procedure based on standard histological treatments in combination with a refined clearing procedure to clear and label portions of the human brain. 3D histological characterization with multiple molecules is performed on cleared samples with a combination of multi-colors and multi-rounds labeling. By performing fast 3D imaging of the samples with a custom-made inverted light-sheet fluorescence microscope (LSFM), we reveal fine details of intact human brain slabs at subcellular resolution. Overall, we proposed a scalable and versatile technology that in combination with LSFM allows mapping the cellular and molecular architecture of the human brain, paving the way to reconstruct the entire organ.


Assuntos
Peróxido de Hidrogênio , Imageamento Tridimensional , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Imunofluorescência , Humanos , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos
11.
Neurophotonics ; 9(Suppl 1): 013001, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35493335

RESUMO

Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, Neurophotonics' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to understand the brain, this status report reviews an extensive and diverse toolkit of novel methods to explore brain function that have emerged from the BRAIN Initiative and related large-scale efforts for measurement and manipulation of brain structure and function. Here, we focus on neurophotonic tools mostly applicable to animal studies. A companion report, scheduled to appear later this year, will cover diffuse optical imaging methods applicable to noninvasive human studies. For each domain, we outline the current state-of-the-art of the respective technologies, identify the areas where innovation is needed, and provide an outlook for the future directions.

12.
Sci Rep ; 12(1): 4328, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35288611

RESUMO

The method 3D polarised light imaging (3D-PLI) measures the birefringence of histological brain sections to determine the spatial course of nerve fibres (myelinated axons). While the in-plane fibre directions can be determined with high accuracy, the computation of the out-of-plane fibre inclinations is more challenging because they are derived from the amplitude of the birefringence signals, which depends e.g. on the amount of nerve fibres. One possibility to improve the accuracy is to consider the average transmitted light intensity (transmittance weighting). The current procedure requires effortful manual adjustment of parameters and anatomical knowledge. Here, we introduce an automated, optimised computation of the fibre inclinations, allowing for a much faster, reproducible determination of fibre orientations in 3D-PLI. Depending on the degree of myelination, the algorithm uses different models (transmittance-weighted, unweighted, or a linear combination), allowing to account for regionally specific behaviour. As the algorithm is parallelised and GPU optimised, it can be applied to large data sets. Moreover, it only uses images from standard 3D-PLI measurements without tilting, and can therefore be applied to existing data sets from previous measurements. The functionality is demonstrated on unstained coronal and sagittal histological sections of vervet monkey and rat brains.


Assuntos
Encéfalo , Imageamento Tridimensional , Algoritmos , Animais , Axônios/fisiologia , Encéfalo/diagnóstico por imagem , Chlorocebus aethiops , Imageamento Tridimensional/métodos , Fibras Nervosas/fisiologia , Ratos
13.
Prog Biophys Mol Biol ; 168: 3-9, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34536443

RESUMO

Cover-all mapping of the distribution of neurons in the human brain would have a significant impact on the deep understanding of brain function. Therefore, complete knowledge of the structural organization of different human brain regions at the cellular level would allow understanding their role in the functions of specific neural networks. Recent advances in tissue clearing techniques have allowed important advances towards this goal. These methods use specific chemicals capable of dissolving lipids, making the tissue completely transparent by homogenizing the refractive index. However, labeling and clearing human brain samples is still challenging. Here, we present an approach to perform the cellular mapping of the human cerebral cortex coupling immunostaining with SWITCH/TDE clearing and confocal microscopy. A specific evaluation of the contributions of the autofluorescence signals generated from the tissue fixation is provided as well as an assessment of lipofuscin pigments interference. Our evaluation demonstrates the possibility of obtaining an efficient clearing and labeling process of parts of adult human brain slices, making it an excellent method for morphological classification and antibody validation of neuronal and non-neuronal markers.


Assuntos
Encéfalo , Neurônios , Córtex Cerebral , Humanos , Imageamento Tridimensional , Microscopia Confocal
14.
Prog Biophys Mol Biol ; 168: 10-17, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34358555

RESUMO

The optical clearing of the cardiac tissue has always been a challenging goal to obtain successful three-dimensional reconstructions of entire hearts. Typically, the developed protocols are targeted at the clearing of the brain; cardiac tissue requires proper arrangements to the original protocols, which are usually tough and time-consuming to figure out. Here, we present the application of three different clearing methodologies on mouse hearts: uDISCO, CLARITY, and SHIELD. For each approach, we describe the required optimizations that we have developed to improve the outcome; in particular, we focus on comparing the features of the tissue after the application of each methodology, especially in terms of tissue preservation, transparency, and staining. We found that the uDISCO protocol induces strong fiber delamination of the cardiac tissue, thus reducing the reliability of structural analyses. The CLARITY protocol confers a high level of transparency to the heart and allows deep penetration of the fluorescent dyes; however, it requires long times for the clearing and the tissue loses its robustness. The SHIELD methodology, indeed, is very promising for tissue maintenance since it preserves its consistency and provides ideal transparency, but further approaches are needed to obtain homogeneous staining of the whole heart. Since the CLARITY procedure, despite the disadvantages in terms of tissue preservation and timings, is actually the most suitable approach to image labeled samples in depth, we optimized and performed the methodology also on human cardiac tissue from control hearts and hearts with hypertrophic cardiomyopathy.


Assuntos
Coração , Imageamento Tridimensional , Animais , Encéfalo , Coração/diagnóstico por imagem , Camundongos , Imagem Óptica , Reprodutibilidade dos Testes
15.
Front Neuroanat ; 15: 752234, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867215

RESUMO

The combination of tissue clearing techniques with advanced optical microscopy facilitates the achievement of three-dimensional (3D) reconstruction of macroscopic specimens at high resolution. Whole mouse organs or even bodies have been analyzed, while the reconstruction of the human nervous system remains a challenge. Although several tissue protocols have been proposed, the high autofluorescence and variable post-mortem conditions of human specimens negatively affect the quality of the images in terms of achievable transparency and staining contrast. Moreover, homogeneous staining of high-density epitopes, such as neuronal nuclear antigen (NeuN), creates an additional challenge. Here, we evaluated different tissue transformation approaches to find the best solution to uniformly clear and label all neurons in the human cerebral cortex using anti-NeuN antibodies in combination with confocal and light-sheet fluorescence microscopy (LSFM). Finally, we performed mesoscopic high-resolution 3D reconstruction of the successfully clarified and stained samples with LSFM.

16.
Front Physiol ; 12: 750364, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867455

RESUMO

Proper three-dimensional (3D)-cardiomyocyte orientation is important for an effective tension production in cardiac muscle. Cardiac diseases can cause severe remodeling processes in the heart, such as cellular misalignment, that can affect both the electrical and mechanical functions of the organ. To date, a proven methodology to map and quantify myocytes disarray in massive samples is missing. In this study, we present an experimental pipeline to reconstruct and analyze the 3D cardiomyocyte architecture in massive samples. We employed tissue clearing, staining, and advanced microscopy techniques to detect sarcomeres in relatively large human myocardial strips with micrometric resolution. Z-bands periodicity was exploited in a frequency analysis approach to extract the 3D myofilament orientation, providing an orientation map used to characterize the tissue organization at different spatial scales. As a proof-of-principle, we applied the proposed method to healthy and pathologically remodeled human cardiac tissue strips. Preliminary results suggest the reliability of the method: strips from a healthy donor are characterized by a well-organized tissue, where the local disarray is log-normally distributed and slightly depends on the spatial scale of analysis; on the contrary, pathological strips show pronounced tissue disorganization, characterized by local disarray significantly dependent on the spatial scale of analysis. A virtual sample generator is developed to link this multi-scale disarray analysis with the underlying cellular architecture. This approach allowed us to quantitatively assess tissue organization in terms of 3D myocyte angular dispersion and may pave the way for developing novel predictive models based on structural data at cellular resolution.

17.
J Vis Exp ; (176)2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34723943

RESUMO

Both genetic and non-genetic cardiac diseases can cause severe remodeling processes in the heart. Structural remodeling, such as collagen deposition (fibrosis) and cellular misalignment, can affect electrical conduction, introduce electromechanical dysfunctions and, eventually, lead to arrhythmia. Current predictive models of these functional alterations are based on non-integrated and low-resolution structural information. Placing this framework on a different order of magnitude is challenging due to the inefficacy of standard imaging methods in performing high-resolution imaging in massive tissue. In this work, we describe a methodological framework that allows imaging of whole mouse hearts with micrometric resolution. The achievement of this goal has required a technological effort where advances in tissue transformation and imaging methods have been combined. First, we describe an optimized CLARITY protocol capable of transforming an intact heart into a nanoporous, hydrogel-hybridized, lipid-free form that allows high transparency and deep staining. Then, a fluorescence light-sheet microscope able to rapidly acquire images of a mesoscopic field of view (mm-scale) with the micron-scale resolution is described. Following the mesoSPIM project, the conceived microscope allows the reconstruction of the whole mouse heart with micrometric resolution in a single tomographic scan. We believe that this methodological framework will allow clarifying the involvement of the cytoarchitecture disarray in the electrical dysfunctions and pave the way for a comprehensive model that considers both the functional and structural data, thus enabling a unified investigation of the structural causes that lead to electrical and mechanical alterations after the tissue remodeling.


Assuntos
Microscopia , Imagem Óptica , Animais , Coração/diagnóstico por imagem , Camundongos , Microscopia/métodos
18.
Biomed Opt Express ; 12(6): 3684-3699, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34221688

RESUMO

Although neuronal density analysis on human brain slices is available from stereological studies, data on the spatial distribution of neurons in 3D are still missing. Since the neuronal organization is very inhomogeneous in the cerebral cortex, it is critical to map all neurons in a given volume rather than relying on sparse sampling methods. To achieve this goal, we implement a new tissue transformation protocol to clear and label human brain tissues and we exploit the high-resolution optical sectioning of two-photon fluorescence microscopy to perform 3D mesoscopic reconstruction. We perform neuronal mapping of 100mm3 human brain samples and evaluate the volume and density distribution of neurons from various areas of the cortex originating from different subjects (young, adult, and elderly, both healthy and pathological). The quantitative evaluation of the density in combination with the mean volume of the thousands of neurons identified within the specimens, allow us to determine the layer-specific organization of the cerebral architecture.

19.
Sci Rep ; 11(1): 8038, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33850168

RESUMO

Analyzing the structure of neuronal fibers with single axon resolution in large volumes is a challenge in connectomics. Different technologies try to address this goal; however, they are limited either by the ineffective labeling of the fibers or in the achievable resolution. The possibility of discriminating between different adjacent myelinated axons gives the opportunity of providing more information about the fiber composition and architecture within a specific area. Here, we propose MAGIC (Myelin Autofluorescence imaging by Glycerol Induced Contrast enhancement), a tissue preparation method to perform label-free fluorescence imaging of myelinated fibers that is user friendly and easy to handle. We exploit the high axial and radial resolution of two-photon fluorescence microscopy (TPFM) optical sectioning to decipher the mixture of various fiber orientations within the sample of interest. We demonstrate its broad applicability by performing mesoscopic reconstruction at a sub-micron resolution of mouse, rat, monkey, and human brain samples and by quantifying the different fiber organization in control and Reeler mouse's hippocampal sections. Our study provides a novel method for 3D label-free imaging of nerve fibers in fixed samples at high resolution, below micrometer level, that overcomes the limitation related to the myelinated axons exogenous labeling, improving the possibility of analyzing brain connectivity.


Assuntos
Encéfalo , Fluorescência , Fibras Nervosas Mielinizadas , Animais , Humanos , Camundongos , Ratos
20.
Front Neurosci ; 14: 569517, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192255

RESUMO

Visualizing neuronal activation on a brain-wide scale yet with cellular resolution is a fundamental technical challenge for neuroscience. This would enable analyzing how different neuronal circuits are disrupted in pathology and how they could be rescued by pharmacological treatments. Although this goal would have appeared visionary a decade ago, recent technological advances make it eventually feasible. Here, we review the latest developments in the fields of genetics, sample preparation, imaging, and image analysis that could be combined to afford whole-brain cell-resolution activation mapping. We show how the different biochemical and optical methods have been coupled to study neuronal circuits at different spatial and temporal scales, and with cell-type specificity. The inventory of techniques presented here could be useful to find the tools best suited for a specific experiment. We envision that in the next years, mapping of neuronal activation could become routine in many laboratories, allowing dissecting the neuronal counterpart of behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA