Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Opt ; 22(7): 76009, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28715543

RESUMO

We describe a method to accurately measure the light scattering model parameters from forward-directed flux (FDF) measurements carried out with a fiber-optic probe (optrode). Improved determination of light scattering parameters will, in turn, permit better modeling and interpretation of optical mapping in the heart using voltage-sensitive dyes. Using our optrode-based system, we carried out high spatial resolution measurements of FDF in intact and homogenized cardiac tissue, as well as in intralipid-based tissue phantoms. The samples were illuminated with a broad collimated beam at 660 and 532 nm. Measurements were performed with a plunge fiber-optic probe (NA=0.22) at a spatial resolution of up to 10 µm. In the vicinity of the illuminated surface, the FDF consistently manifested a fast decaying exponent with a space constant comparable with the decay rate of ballistic photons. Using a Monte Carlo model, we obtained a simple empirical formula linking the rate of the fast exponent to the scattering coefficient, the anisotropy parameter g, and the numerical aperture of the probe. The estimates of scattering coefficient based on this formula were validated in tissue phantoms. Potential applications of optical fiber-based FDF measurements for the evaluation of optical parameters in turbid media are discussed.


Assuntos
Tecnologia de Fibra Óptica , Coração/fisiologia , Luz , Espalhamento de Radiação , Método de Monte Carlo , Miocárdio/metabolismo , Fibras Ópticas , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA