Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 9(50): eade1660, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38091386

RESUMO

In their environment, cells must cope with mechanical stresses constantly. Among these, nanoscale deformations of plasma membrane induced by substrate nanotopography are now largely accepted as a biophysical stimulus influencing cell behavior and function. However, the mechanotransduction cascades involved and their precise molecular effects on cellular physiology are still poorly understood. Here, using homemade fluorescent nanostructured cell culture surfaces, we explored the role of Bin/Amphiphysin/Rvs (BAR) domain proteins as mechanosensors of plasma membrane geometry. Our data reveal that distinct subsets of BAR proteins bind to plasma membrane deformations in a membrane curvature radius-dependent manner. Furthermore, we show that membrane curvature promotes the formation of dynamic actin structures mediated by the Rho GTPase CDC42, the F-BAR protein CIP4, and the presence of PI(4,5)P2. In addition, these actin-enriched nanodomains can serve as platforms to regulate receptor signaling as they appear to contain interferon-γ receptor (IFNγ-R) and to lead to the partial inhibition of IFNγ-induced JAK/STAT signaling.


Assuntos
Actinas , Mecanotransdução Celular , Actinas/metabolismo , Polimerização , Membrana Celular/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA