Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Pathog ; 193: 106750, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906491

RESUMO

The antifungal activity of Serratia plymuthica CCGG2742, a bacterial strain isolated from grapes berries skin, against a phytopathogenic fungus isolated from blueberries was evaluated in vitro and in vivo. In order to characterize the wild fungal isolate, phylogenetic analysis using concatenated DNA sequences from the RPB2 and TEF1 genes and of the ITS region was performed, allowing the identification of the fungal isolate that was called Alternaria tenuissima CC17. Hyphae morphology, mycelium ultrastructure, conidia and reproductive structures were in agreement with the phylogenetic analysis. The antifungal activity of the S. plymuthica strain was dependent on the composition of the culture medium. The greatest inhibition of mycelial growth of A. tenuissima CC17 by S. plymuthica CCGG2742 was observed on YTS medium, which lacks of an easily assimilable carbon source. Fungal growth medium supplemented with 50 % of bacterial supernatant decreased the conidia germination of A. tenuissima CC17 up to 32 %. Preventive applications of S. plymuthica CCGG2742 to blueberries and tomato leaves at conidia:bacteria ratio of 1:100, protected in 77.8 ± 4.6 % and 98.2 ± 0.6 % to blueberries and tomato leaves from infection caused by A. tenuissima CC17, respectively. To the best of our knowledge, this is the first report on the antifungal activity of S. plymuthica against A. tenuissima, which could be used as a biological control agent of plant diseases caused by this fungal species. In addition, the results of this work could be a starting point to attribute the real importance of A. tenuissima as a pathogen of blueberries in Chile, which until now had been considered almost exclusively to A. alternata. Likewise, this research could be relevant to start developing highly effective strategies based on S. plymuthica CCGG2742 for the control of this important phytopathogenic fungus.

2.
J Fish Dis ; 43(2): 197-206, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31845350

RESUMO

The Isavirus is an orthomyxovirus with a genome composed of eight segments of negative single-strand RNA (-ssRNA). It has been proposed that the eight genomic segments of the Isavirus are organized as a ribonucleoprotein (RNP) complex called a minigenome, which contains all the viral RNA segments, a viral heterotrimeric polymerase and multiple copies of the viral nucleoprotein (NP). Here, we develop an Isavirus minigenome system and show the importance of the formation of active RNPs and the role of viral NP R189, R194, R302 and K325 residues in the NP RNA-binding domain in the context of RNPs. The results indicate it is possible to generate a minigenome in salmon cells, a composite ISAV RNPs with EGFP-based chimeric vRNA with heterotrimeric polymerase (PB1, PB2, PA) and NP protein using CMV-based auxiliary plasmids. It was also shown that NP R189, R194, R302 and K325 residues are important to generate viral mRNA from the constituted RNPs and a detectable reporter protein. This work is the first salmon cell-based minigenome assay for the Isavirus, which was evaluated by a bioinformatic and functional study of the NP protein in viral RNPs, which showed that correct NP-vRNA interaction is key to the functioning of RNPs.


Assuntos
Genoma Viral , Isavirus/genética , Motivos de Ligação ao RNA/genética , Ribonucleoproteínas/genética , Salmo salar/virologia , Proteínas Virais/genética , Animais , Genômica
3.
Arch Virol ; 164(5): 1479-1483, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30848387

RESUMO

Eight different double-stranded RNA (dsRNA) molecules were found in the wild-type fungal strain Botrytis cinerea CCg427. The electrophoretic profile displayed molecules with approximate sizes of 1, 1.3, 1.6, 1.8, 3.3, 4.1, 6.5, and 12 kbp. Sequences analysis of the molecules in the 6.5-kbp band revealed the presence of two different dsRNA molecules (dsRNA-1 and dsRNA-2) of 6192 and 5567 bp. Each molecule contained a unique ORF (5487 and 4836 nucleotides in dsRNA-1 and dsRNA-2, respectively). The ORF of dsRNA-1 encodes a 205-kDa polypeptide that shares 58% amino acid sequence identity with the RNA-dependent RNA polymerase (RdRp) encoded by dsRNA-1 of Alternaria sp. SCFS-3 botybirnavirus (ABRV1), whereas the ORF of dsRNA-2 encodes a 180-kDa polypeptide that shares 52% amino acid sequence identity with an unclassified protein encoded by dsRNA-2 of ABRV1. Genome organization and phylogenetic analysis based on the amino acid sequences of RdRps in members of different dsRNA virus families showed that the dsRNAs in the 6.5-kbp band correspond to the genome of a new botybirnavirus that we have named "Botrytis cinerea botybirnavirus 1".


Assuntos
Botrytis/virologia , Micovírus/genética , Genoma Viral/genética , Vírus de RNA/genética , RNA Viral/genética , Sequência de Aminoácidos , Micovírus/classificação , Micovírus/isolamento & purificação , Filogenia , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética
4.
Food Chem ; 254: 87-94, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29548477

RESUMO

Myrosinase is a glycosylated enzyme present in the Brassicaceae family that catalyzes the hydrolysis of glucoraphanin to yield sulforaphane, recognized as a health-promoting compound found in cruciferous foods. Broccoli myrosinase has been poorly characterized. In this work, the enzyme was purified from broccoli florets and its kinetic behaviour was analyzed. The cDNA of broccoli myrosinase was isolated and sequenced to obtain the amino acids sequence of the enzyme. A three-dimensional structural model of a broccoli myrosinase subunit was built and used to perform molecular docking simulations with glucoraphanin and other glucosinolates. Kinetic data were adjusted to the Two-Binding Sites Model that describes substrate inhibition, obtaining R2 higher than 97%. The docking simulations confirmed the existence of two substrate-binding sites in the monomer, and allowed identifying the residues that interact with the substrate in each site. Our findings will help to design strategies to better exploit the health-promoting properties of broccoli.


Assuntos
Brassica/enzimologia , Glucosinolatos/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , DNA Complementar/química , DNA Complementar/isolamento & purificação , Glicosídeo Hidrolases/genética , Humanos , Hidrólise , Imidoésteres/metabolismo , Isotiocianatos/metabolismo , Cinética , Simulação de Acoplamento Molecular , Oximas , Sulfóxidos
5.
Genome Announc ; 4(3)2016 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-27313292

RESUMO

Pantoea agglomerans LMAE-2 was isolated from seabed sediment moderately contaminated with Cu(2+) Here, we report its draft genome sequence, which has a size of 4.98 Mb. The presence of cop genes related with copper homeostasis in its genome may explain the resistance and strengthen its potential for use as bioremediation agent.

6.
Stand Genomic Sci ; 10: 110, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26605004

RESUMO

Janthinobacterium lividum is a Gram-negative bacterium able to produce violacein, a pigment with antimicrobial and antitumor properties. Janthinobacterium lividum colonizes the skin of some amphibians and confers protection against fungal pathogens. The mechanisms underlying this association are not well understood. In order to identify the advantages for the bacterium to colonize amphibian skin we sequenced Janthinobacterium lividum strain MTR, a strain isolated from Cajón del Maipo, Chile. The strain has capnophilic behavior, with growth favored by high concentrations (5 %) of carbon dioxide. Its genome is 6,535,606 bp in size, with 5,362 coding sequences and a G + C content of 62.37 %. The presence of genes encoding for products that participate in the carbon fixation pathways (dark CAM pathways), and the entire set of genes encoding for the enzymes of the glyoxylate cycle may explain the capnophilic behavior and allow us to propose that the CO2 secreted by the skin of amphibians is the signal molecule that guides colonization by Janthinobacterium lividum.

7.
Virol J ; 10: 220, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23816333

RESUMO

BACKGROUND: Botrytis cinerea CCg378 is a wild-type strain infected with two types of double-stranded RNA (dsRNA) mycoviruses and which presents hypovirulence-associated traits. The objectives of the present study were to characterize the mycoviruses and investigate their relationship with the low virulence degree of the fungal host. RESULTS: B. cinerea CCg378 contains five dsRNA molecules that are associated with two different types of isometric viral particles of 32 and 23 nm in diameter, formed by structural polypeptides of 70-kDa and 48-kDa, respectively. The transfection of spheroplasts of a virus-free strain, B. cinerea CKg54, with viral particles purified from the CCg378 strain revealed that the 2.2-kbp dsRNAs have no dependency on the smaller molecules for its stable maintenance in the fungal cytoplasm, because a fungal clone that only contains the 2.2-kbp dsRNAs associated with the 32-nm particles was obtained, which we named B. cinerea CKg54vi378. One of the 2.2 kbpdsRNA segments (2219 bp) was sequenced and corresponds to the gene encoding the capsid protein of B. cinerea CCg378 virus 1 (Bc378V1), a putative new member of the Partitiviridae family. Furthermore, physiological parameters related to the degree of virulence of the fungus, such as the sporulation rate and laccase activity, were lower in B. cinerea CCg378 and B. cinerea CKg54vi378 than in B. cinerea CKg54. Additionally, bioassays performed on grapevine leaves showed that the CCg378 and CKg54vi378 strains presented a lower degree of invasiveness on the plant tissue than the CKg54 strain. CONCLUSIONS: The results show that B. cinerea CCg378 is coinfected by two mycoviruses and that the 2.2-kbp dsRNAs correspond to the 32-nm mycovirus genome, which would be a new member of the Partitiviridae family as it has the typical pattern of partitiviruses. On the other hand, the results suggest that the hypovirulence of B. cinerea CCg378 could be conferred by both mycoviruses, since the fungal clone B. cinerea CKg54vi378 presents an intermediate virulence between the CKg54 and CCg378 strains. Therefore, the putative partitivirus would be partially contributing to the hypovirulence phenotype of the CCg378 strain.


Assuntos
Botrytis/crescimento & desenvolvimento , Botrytis/virologia , Vírus de RNA/classificação , Vírus de RNA/genética , RNA de Cadeia Dupla/genética , RNA Viral/genética , Botrytis/patogenicidade , Dados de Sequência Molecular , Peso Molecular , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Vírus de RNA/isolamento & purificação , RNA Viral/isolamento & purificação , Análise de Sequência de DNA , Proteínas Estruturais Virais/química , Vírion/ultraestrutura , Virulência , Vitis/microbiologia
8.
Virol J ; 8: 38, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21262001

RESUMO

BACKGROUND: In most of the infected fungi, the mycoviruses are latent or cryptic, the infected fungus does not show disease symptoms, and it is phenotypically identical to a non-infected strain of the same species. Because of these properties, the initial stage in the search for fungi infected with mycoviruses is the detection of their viral genome, which in most of the described cases corresponds to double-stranded RNA (dsRNA). So to analyze a large number of fungal isolates it is necessary to have a simple and rapid method to detect dsRNA. RESULTS: A rapid method to isolate dsRNA from a virus-infected filamentous fungus, Botrytis cinerea, and from a killer strain of Saccharomyces cerevisiae using commercial minicolumns packed with CF11 cellulose was developed. In addition to being a rapid method, it allows to use small quantities of yeasts or mycelium as starting material, being obtained sufficient dsRNA quantity that can later be analyzed by agarose gel electrophoresis, treated with enzymes for its partial characterization, amplified by RT-PCR and cloned in appropriate vectors for further sequencing. CONCLUSIONS: The method yields high quality dsRNA, free from DNA and ssRNA. The use of nucleases to degrade the DNA or the ssRNA is not required, and it can be used to isolate dsRNA from any type of fungi or any biological sample that contains dsRNA.


Assuntos
Botrytis/virologia , RNA de Cadeia Dupla/isolamento & purificação , RNA Viral/isolamento & purificação , Saccharomyces cerevisiae/virologia , Cromatografia Líquida/métodos , Virologia/métodos
9.
Virus Res ; 155(1): 10-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20979983

RESUMO

The infectious salmon anemia virus (ISAV) is the causative agent of the ISA syndrome that affects mainly Atlantic salmon (Salmo salar) and has caused high mortality epidemics in Norway, Scotland, Canada, the United States and Chile. It is classified as an Orthomyxoviridae, its genome is composed of 8 single-strand RNA segments with negative polarity that code for 11 polypeptides. Through functional studies of the coded proteins it has been established that RNA segments 5 and 6 code for a fusion protein and hemagglutinin, respectively, while two polypeptides coded by segments 7 and 8 inhibit interferon induction. The functions of the rest of the possible proteins coded by the viral genome have been assigned by comparison with the corresponding ones of the influenza virus genome. As to its pathogenicity, some growth parameters such as incubation period, resistance to chemical and physical factors, establishment of the infection in other marine species, and dissemination ability among the different organs have been evaluated in several salmonids. Genomic analysis has shown (i) the existence of a high polymorphism region (HPR) in segment 6, and (ii) sequence insertion in segment 5. More than 20 HPR variants have been determined, all originating from HPR0, which is associated with low pathogenicity, while 4 different sequence insertions in segment 5 have not been related with some characteristic of the virus infection. Much progress has been made in the characterization of the virus in 20 years of study, but more detailed knowledge of the specific function of the proteins coded by all the viral genes is still missing, including the pathogenicity mechanism at the molecular level.


Assuntos
Doenças dos Peixes/virologia , Isavirus/genética , Isavirus/patogenicidade , Infecções por Orthomyxoviridae/veterinária , Salmo salar/virologia , Animais , Canadá , Chile , Surtos de Doenças , Noruega , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia , Polimorfismo Genético , RNA Viral/genética , Escócia , Estados Unidos , Proteínas Virais/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA