Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Commun Biol ; 6(1): 1136, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945934

RESUMO

Cognitive impairment is a common symptom following mild traumatic brain injury (mTBI or concussion) and can persist for years in some individuals. Hippocampal slice preparations following closed-head, rotational acceleration injury in swine have previously demonstrated reduced axonal function and hippocampal circuitry disruption. However, electrophysiological changes in hippocampal neurons and their subtypes in a large animal mTBI model have not been examined. Using in vivo electrophysiology techniques, we examined laminar oscillatory field potentials and single unit activity in the hippocampal network 7 days post-injury in anesthetized minipigs. Concussion altered the electrophysiological properties of pyramidal cells and interneurons differently in area CA1. While the firing rate, spike width and amplitude of CA1 interneurons were significantly decreased post-mTBI, these parameters were unchanged in CA1 pyramidal neurons. In addition, CA1 pyramidal neurons in TBI animals were less entrained to hippocampal gamma (40-80 Hz) oscillations. Stimulation of the Schaffer collaterals also revealed hyperexcitability across the CA1 lamina post-mTBI. Computational simulations suggest that reported changes in interneuronal physiology may be due to alterations in voltage-gated sodium channels. These data demonstrate that a single concussion can lead to significant neuronal and circuit level changes in the hippocampus, which may contribute to cognitive dysfunction following mTBI.


Assuntos
Concussão Encefálica , Humanos , Animais , Suínos , Porco Miniatura , Hipocampo/fisiologia , Interneurônios/fisiologia , Células Piramidais/fisiologia
2.
Brain Sci ; 13(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37190539

RESUMO

OBJECTIVES: Fatigue in multiple sclerosis (MS) is a frequent and invalidating symptom, which can be relieved by non-invasive neuromodulation, which presents only negligible side effects. A 5-day transcranial direct-current stimulation, 15 min per day, anodically targeting the somatosensory representation of the whole body against a larger occipital cathode was efficacious against MS fatigue (fatigue relief in multiple sclerosis, Faremus treatment). The present proof-of-concept study tested the working hypothesis that Faremus S1 neuromodulation modifies the homology of the dominant and non-dominant corticospinal (CST) circuit recruitment. METHODS: CST homology was assessed via the Fréchet distance between the morphologies of motor potentials (MEPs) evoked by transcranial magnetic stimulation in the homologous left- and right-hand muscles of 10 fatigued MS patients before and after Faremus. RESULTS: In the absence of any change in MEP features either as differences between the two body sides or as an effect of the treatment, Faremus changed in physiological direction the CST's homology. Faremus effects on homology were more evident than recruitment changes within the dominant and non-dominant sides. CONCLUSIONS: The Faremus-related CST changes extend the relevance of the balance between hemispheric homologs to the homology between body sides. With this work, we contribute to the development of new network-sensitive measures that can provide new insights into the mechanisms of neuronal functional patterning underlying relevant symptoms.

3.
Brain Sci ; 13(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36831776

RESUMO

Stroke is a major cause of disability because of its motor and cognitive sequelae even when the acute phase of stabilization of vital parameters is overcome. The most important improvements occur in the first 8-12 weeks after stroke, indicating that it is crucial to improve our understanding of the dynamics of phenomena occurring in this time window to prospectively target rehabilitation procedures from the earliest stages after the event. Here, we studied the intracortical excitability properties of delivering transcranial magnetic stimulation (TMS) to the primary motor cortex (M1) of left and right hemispheres in 17 stroke patients who suffered a mono-lateral left hemispheric stroke, excluding pure cortical damage. All patients were studied within 10 days of symptom onset. TMS-evoked potentials (TEPs) were collected via a TMS-compatible electroencephalogram system (TMS-EEG) concurrently with motor-evoked responses (MEPs) induced in the contralateral first dorsal interosseous muscle. Comparison with age-matched healthy volunteers was made by collecting the same bilateral-stimulation data in nine healthy volunteers as controls. Excitability in the acute phase revealed relevant changes in the relationship between left lesioned and contralesionally right hemispheric homologous areas both for TEPs and MEPs. While the paretic hand displayed reduced MEPs compared to the non-paretic hand and to healthy volunteers, TEPs revealed an overexcitable lesioned hemisphere with respect to both healthy volunteers and the contra-lesion side. Our quantitative results advance the understanding of the impairment of intracortical inhibitory networks. The neuronal dysfunction most probably changes the excitatory/inhibitory on-center off-surround organization that supports already acquired learning and reorganization phenomena that support recovery from stroke sequelae.

4.
J Infect Public Health ; 16(4): 520-525, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36801631

RESUMO

BACKGROUND: There is a scarcity of information in literature regarding the clinical differences and comorbidities of patients affected by Coronavirus disease 2019 (COVID-19), which could clarify the different prevalence of the outcomes (composite and only death) between several Italian regions. OBJECTIVE: This study aimed to assess the heterogeneity of clinical features of patients with COVID-19 upon hospital admission and disease outcomes in the northern, central, and southern Italian regions. METHODS: An observational cohort multicenter retrospective study including 1210 patients who were admitted for COVID-19 in Infectious diseases, Pulmonology, Endocrinology, Geriatrics and Internal Medicine Units in Italian cities stratified between north (263 patients); center (320 patients); and south (627 patients), during the first and second pandemic waves of SARS-CoV-2 (from February 1, 2020 to January 31, 2021). The data, obtained from clinical charts and collected in a single database, comprehended demographic characteristics, comorbidities, hospital and home pharmacological therapies, oxygen therapy, laboratory values, discharge, death and Intensive care Unit (ICU) transfer. Death or ICU transfer were defined as composite outcomes. RESULTS: Male patients were more frequent in the northern Italian region than in the central and southern regions. Diabetes mellitus, arterial hypertension, chronic pulmonary and chronic kidney diseases were the comorbidities more frequent in the southern region; cancer, heart failure, stroke and atrial fibrillation were more frequent in the central region. The prevalence of the composite outcome was recorded more frequently in the southern region. Multivariable analysis showed a direct association between the combined event and age, ischemic cardiac disease, and chronic kidney disease, in addition to the geographical area. CONCLUSIONS: Statistically significant heterogeneity was observed in patients with COVID-19 characteristics at admission and outcomes from northern to southern Italy. The higher frequency of ICU transfer and death in the southern region may depend on the wider hospital admission of frail patients for the availability of more beds since the burden of COVID-19 on the healthcare system was less intense in southern region. In any case, predictive analysis of clinical outcomes should consider that the geographical differences that may reflect clinical differences in patient characteristics, are also related to access to health-care facilities and care modalities. Overall, the present results caution against generalizability of prognostic scores in COVID-19 patients derived from hospital cohorts in different settings.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Masculino , COVID-19/epidemiologia , Pandemias , Estudos Retrospectivos , Itália/epidemiologia
7.
Neuroscience ; 490: 144-154, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35288177

RESUMO

Physiological movement develops on the basis of sensorimotor integration through synchronisation between the copy of signals sent to the effector muscles and the incoming flow of sensory information. Our aim is to study corticomuscular coherence (CMC), the most widely used measure of synchronization between brain and muscle electrical activities, in dependence on the level of visual feedback and the executing body side. We analysed CMC in 18 healthy volunteers while performing a weak isometric handgrip of an air bulb with either the right or the left hand, in either the presence or absence of visual feedback on the exerted pressure. The absence of visual feedback decreased the CMC peak frequency from 27 Hz to 23 Hz (p < 0.001), increased the CMC peak amplitude from 0.05 to 0.07 (p = 0.005) and decreased the electroencephalographic beta band power (p = 0.005). None of these measures changed in dependence on the performing hand (p > 0.2 consistently). The lack of dependence of CMC on the controlled hand involved in the movement can be considered in agreement with small hemispheric asymmetries of hand representations in primary sensorimotor cortices. Modulation of visual information changed corticomuscular synchronizations and cortical involvement, reflecting the crucial role of gaze in human behaviour. Given the fundamental role of sensory integration in motor execution, the availability of a simple index sensitive to modulations of perceptual afferents may prove useful in determining the use or the monitoring of the effects of sensory enrichments in personalized rehabilitation.


Assuntos
Contração Isométrica , Córtex Motor , Eletroencefalografia , Eletromiografia , Retroalimentação Sensorial , Força da Mão/fisiologia , Humanos , Contração Isométrica/fisiologia , Córtex Motor/fisiologia , Músculo Esquelético/fisiologia
8.
Epilepsy Behav ; 128: 108513, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35085916

RESUMO

OBJECTIVE: To assess the occurrence of sleep disorders (SD) and attention deficit hyperactivity disorder (ADHD) symptoms in children with typical absence seizures (TAS) compared to control children and to evaluate the impact of epilepsy-related factors on sleep and attention in children with TAS. METHODS: The Sleep Disturbance Scale for Children (SDSC) and the ADHD rating scale were filled in by parents of a cohort composed by 82 children aged from 5 to 15.6 years, 49% of boys (41 with TAS with a syndromic diagnosis of childhood absence epilepsy and 41 controls). For children with TAS, the Pediatric Epilepsy Side Effects Questionnaire was completed. Statistical analyses were conducted in order to compare sleep and attention scores between groups. In children with TAS, a correlation was computed between these scores. Logistics regression models were conducted to identify predictors of excessive diurnal sleepiness and inattention in children with TAS. RESULTS: Compared to controls, children with TAS had higher total scores for subjective sleep (mean 42.9 vs 38.3, p = 0.05) and attention disorders (mean 16.8 vs 11.6, p = 0.01), especially for excessive diurnal sleepiness (mean 3.9 vs 3.2, p = 0.02) and inattention (mean 9.3 vs 5.6, p = 0.003) components. In children with TAS, sleep problems were significantly under-reported by parents. Sleep disorders symptoms as breathing-related sleep disturbance, excessive diurnal sleepiness or naps at or after 7 years of age were reported. Subjective sleep and attention disorders were significantly correlated (r = 0.43, p = 0.01). Subjective excessive diurnal sleepiness may be the result of a polytherapy (p = 0.05) or a side effect of anti-seizure medication (ASM) (p = 0.03) but children without medication side effects also reported subjective SD. In children with TAS, the risk of inattention symptoms was increased in boys (p = 0.02), with a high BMI (p = 0.05), or with ASM side effects (p = 0.03). CONCLUSIONS: This study demonstrates that children with TAS are at risk of sleep and attention disorder symptoms. If attention disorders in a context of epilepsy are now widely assessed and identified, sleep disorders are still under-estimated. An accurate identification and management of sleep disorders could improve academic performances, quality of life, and seizure management in children with TAS.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Epilepsia Tipo Ausência , Transtornos do Sono-Vigília , Adolescente , Transtorno do Deficit de Atenção com Hiperatividade/complicações , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Criança , Pré-Escolar , Humanos , Masculino , Qualidade de Vida , Convulsões/complicações , Convulsões/epidemiologia , Sono , Transtornos do Sono-Vigília/epidemiologia , Transtornos do Sono-Vigília/etiologia , Inquéritos e Questionários
9.
Brain Topogr ; 34(3): 363-372, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33656622

RESUMO

Fatigue is a hidden symptom of Multiple Sclerosis (MS) disease that nevertheless impacts severely on patients' everyday life. Evidence indicates the involvement of the sensorimotor network and its inter-nodes communication at the basis of this symptom. Two randomized controlled trials (RCTs) showed that the personalized neuromodulation called Fatigue Relief in Multiple Sclerosis (FaReMuS) efficaciously fights multiple sclerosis (MS) fatigue. By this Proof of Concept study, we tested whether FaReMuS reverts the alteration of the brain-muscular synchronization previously observed occurring with fatigue. The cortico muscular coherence (CMC) was studied in 11 patients before and after FaReMuS, a 5-day tDCS (1.5 mA, 15 min per day) anodal over the whole body's somatosensory representation (S1) via a personalized MRI-based electrode (35 cm2) against the occipital cathode (70 cm2). Before FaReMuS, the CMC was observed at a mean frequency of 31.5 ± 1.6 Hz (gamma-band) and positively correlated with the level of fatigue (p = .027). After FaReMuS, fatigue reduced in average of 28% ± 33% the baseline level, and the CMC frequency reduced to 26.6 ± 1.5 Hz (p = .022), thus forthcoming the physiological beta-band as observed in healthy people. The personalized S1 neuromodulation treatment, ameliorating the central-peripheral communication that subtends simple everyday movements, supports the appropriateness of neuromodulations aiming at increasing the parietal excitability in fighting MS fatigue. The relationship between central-peripheral features and fatigue profile strengthens a central more than peripheral origin of the symptom.


Assuntos
Esclerose Múltipla , Estimulação Transcraniana por Corrente Contínua , Encéfalo , Fadiga/etiologia , Fadiga/terapia , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla/complicações , Esclerose Múltipla/terapia
10.
eNeuro ; 7(5)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32737188

RESUMO

While hippocampal-dependent learning and memory are particularly vulnerable to traumatic brain injury (TBI), the functional status of individual hippocampal neurons and their interactions with oscillations are unknown following injury. Using the most common rodent TBI model and laminar recordings in CA1, we found a significant reduction in oscillatory input into the radiatum layer of CA1 after TBI. Surprisingly, CA1 neurons maintained normal firing rates despite attenuated input, but did not maintain appropriate synchronization with this oscillatory input or with local high-frequency oscillations. Normal synchronization between these coordinating oscillations was also impaired. Simultaneous recordings of medial septal neurons known to participate in theta oscillations revealed increased GABAergic/glutamatergic firing rates postinjury under anesthesia, potentially because of a loss of modulating feedback from the hippocampus. These results suggest that TBI leads to a profound disruption of connectivity and oscillatory interactions, potentially disrupting the timing of CA1 neuronal ensembles that underlie aspects of learning and memory.


Assuntos
Lesões Encefálicas Traumáticas , Ritmo Teta , Potenciais de Ação , Hipocampo , Humanos , Memória , Neurônios
11.
Sci Rep ; 9(1): 18213, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796805

RESUMO

The people with multiple sclerosis (MS) often report that fatigue restricts their life. Nowadays, pharmacological treatments are poorly effective accompanied by relevant side effects. A 5-day transcranial direct current stimulation (tDCS) targeting the somatosensory representation of the whole body (S1) delivered through an electrode personalized based on the brain MRI was efficacious against MS fatigue (FaReMuS treatment). This proof of principle study tested whether possible changes of the functional organization of the primary sensorimotor network induced by FaReMuS partly explained the effected fatigue amelioration. We measured the brain activity at rest through electroencephalography equipped with a Functional Source Separation algorithm and we assessed the neurodynamics state of the primary somatosensory (S1) and motor (M1) cortices via the Fractal Dimension and their functional connectivity via the Mutual Information. The dynamics of the neuronal electric activity, more distorted in S1 than M1 before treatment, as well as the network connectivity, altered maximally between left and right M1 homologs, reverted to normal after FaReMuS. The intervention-related changes explained 48% of variance of fatigue reduction in the regression model. A personalized neuromodulation tuned in on specific anatomo-functional features of the impaired regions can be effective against fatigue.


Assuntos
Fadiga/terapia , Córtex Motor/fisiopatologia , Esclerose Múltipla/terapia , Córtex Somatossensorial/fisiopatologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Eletrodos , Eletroencefalografia , Fadiga/etiologia , Fadiga/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Esclerose Múltipla/complicações , Estudo de Prova de Conceito , Córtex Somatossensorial/diagnóstico por imagem , Estimulação Transcraniana por Corrente Contínua/instrumentação , Resultado do Tratamento
12.
Front Neurosci ; 13: 397, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31080400

RESUMO

Decoding laminar information across deep brain structures and cortical regions is necessary in order to understand the neuronal ensembles that represent cognition and memory. Large animal models are essential for translational research due to their gyrencephalic neuroanatomy and significant white matter composition. A lack of long-length probes with appropriate stiffness allowing penetration to deeper structures with minimal damage to the neural interface is one of the major technical limitations to applying the approaches currently utilized in lower order animals to large animals. We therefore tested the performance of multichannel silicon probes of various solutions and designs that were developed specifically for large animal electrophysiology. Neurophysiological signals from dorsal hippocampus were recorded in chronically implanted awake behaving Yucatan pigs. Single units and local field potentials were analyzed to evaluate performance of given silicon probes over time. EDGE-style probes had the highest yields during intra-hippocampal recordings in pigs, making them the most suitable for chronic implantations and awake behavioral experimentation. In addition, the cross-sectional area of silicon probes was found to be a crucial determinant of silicon probe performance over time, potentially due to reduction of damage to the neural interface. Novel 64-channel EDGE-style probes tested acutely produced an optimal single unit separation and a denser sampling of the laminar structure, identifying these research silicon probes as potential candidates for chronic implantations. This study provides an analysis of multichannel silicon probes designed for large animal electrophysiology of deep laminar brain structures, and suggests that current designs are reaching the physical thresholds necessary for long-term (∼1 month) recordings with single-unit resolution.

13.
Hum Brain Mapp ; 40(5): 1445-1457, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30430697

RESUMO

Intrinsic brain activity is organized in spatial-temporal patterns, called resting-state networks (RSNs), exhibiting specific structural-functional architecture. These networks presumably reflect complex neurophysiological processes and have a central role in distinct perceptual and cognitive functions. In this work, we propose an innovative approach for characterizing RSNs according to their underlying neural oscillations. We investigated specific electrophysiological properties, including spectral features, fractal dimension, and entropy, associated with eight core RSNs derived from high-density electroencephalography (EEG) source-reconstructed signals. Specifically, we found higher synchronization of the gamma-band activity and higher fractal dimension values in perceptual (PNs) compared with higher cognitive (HCNs) networks. The inspection of this underlying rapid activity becomes of utmost importance for assessing possible alterations related to specific brain disorders. The disruption of the coordinated activity of RSNs may result in altered behavioral and perceptual states. Thus, this approach could potentially be used for the early detection and treatment of neurological disorders.


Assuntos
Encéfalo/fisiologia , Rede Nervosa/fisiologia , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Cognição/fisiologia , Eletroencefalografia , Fenômenos Eletrofisiológicos , Entropia , Feminino , Fractais , Ritmo Gama/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Percepção/fisiologia , Descanso , Adulto Jovem
14.
eNeuro ; 5(5)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30229132

RESUMO

The hippocampus is integral to working and episodic memory and is a central region of interest in diseases affecting these processes. Pig models are widely used in translational research and may provide an excellent bridge between rodents and nonhuman primates for CNS disease models because of their gyrencephalic neuroanatomy and significant white matter composition. However, the laminar structure of the pig hippocampus has not been well characterized. Therefore, we histologically characterized the dorsal hippocampus of Yucatan miniature pigs and quantified the cytoarchitecture of the hippocampal layers. We then utilized stereotaxis combined with single-unit electrophysiological mapping to precisely place multichannel laminar silicon probes into the dorsal hippocampus without the need for image guidance. We used in vivo electrophysiological recordings of simultaneous laminar field potentials and single-unit activity in multiple layers of the dorsal hippocampus to physiologically identify and quantify these layers under anesthesia. Consistent with previous reports, we found the porcine hippocampus to have the expected archicortical laminar structure, with some anatomical and histological features comparable to the rodent and others to the primate hippocampus. Importantly, we found these distinct features to be reflected in the laminar electrophysiology. This characterization, as well as our electrophysiology-based methodology targeting the porcine hippocampal lamina combined with high-channel-count silicon probes, will allow for analysis of spike-field interactions during normal and disease states in both anesthetized and future awake behaving neurophysiology in this large animal.


Assuntos
Potenciais de Ação/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Hipocampo/fisiologia , Vias Neurais/fisiologia , Animais , Estimulação Elétrica/métodos , Masculino , Modelos Animais , Suínos , Lobo Temporal/fisiologia
15.
Front Neurosci ; 12: 284, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867308

RESUMO

The shape and position of the electrodes is a key factor for the efficacy of transcranial electrical stimulations (tES). We have recently introduced the Regional Personalized Electrode (RePE), a tES electrode fitting the personal cortical folding, that has been able to differentiate the stimulation of close by regions, in particular the primary sensory (S1) and motor (M1) cortices, and to personalize tES onto such an extended cortical district. However, neuronavigation on individual brain was compulsory for the correct montage. Here, we aimed at developing and testing a neuronavigation-free procedure for easy and quick positioning RePE, enabling multisession RePE-tES at home. We used off-line individual MRI to shape RePE via an ad-hoc computerized procedure, while an ad-hoc developed Adjustable Helmet Frame (AHF) was used to properly position it in multisession treatments, even at home. We used neuronavigation to test the RePE shape and position obtained by the new computerized procedure and the re-positioning obtained via the AHF. Using Finite Element Method (FEM) model, we also estimated the intra-cerebral current distribution induced by transcranial direct current stimulation (tDCS) comparing RePE vs. non-RePE with fixed reference. Additionally, we tested, using FEM, various shapes, and positions of the reference electrode taking into account possible small displacements of RePE, to test feasibility of RePE-tES sessions at home. The new RePE neuronavigation-free positioning relies on brain MRI space distances, and produced a mean displacement of 3.5 ± 0.8 mm, and the re-positioning of 4.8 ± 1.1 mm. Higher electric field in S1 than in M1 was best obtained with the occipital reference electrode, a montage that proved to feature low sensitivity to typical RePE millimetric displacements. Additionally, a new tES accessory was developed to enable repositioning the electrodes over the scalp also at home, with a precision which is acceptable according to the modeling-estimated intracerebral currents. Altogether, we provide here a procedure to simplify and make easily applicable RePE-tDCS, which enables efficacious personalized treatments.

16.
Front Neural Circuits ; 12: 44, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29899691

RESUMO

Focal epilepsy is a network pathology, where the brain connectivity of the epileptic focus (EF) influences seizure frequency and cortical dysfunction. Growing evidence supports a clinical efficacy of cathodal transcranial direct current stimulation (ctDCS) in drug-resistant epilepsy (DRE). ctDCS effects can be merely attributed to the inhibition of cortical excitability, which is abnormally increased in epilepsy, but its effect on brain network of DRE patients has never been reported. We aimed at exploring the hypothesis that functional connectivity (FC) changes may explain part of ctDCS clinical effects in DRE patients. We assessed the ctDCS-induced changes of electroencephalography-derived brain FC of a group of six temporal lobe DRE patients receiving a seizure reduction after ctDCS. By a single-subject eLORETA analysis, we compared the FC among the EF region and other nine bilateral macro-regions, before and after Real and Sham ctDCS in a double-blind Sham-controlled crossover design. FC changed after Real ctDCS in all patients despite no appreciable changes occurred after Sham. Most of FC changes (73%) involved the EF region. The epileptic seizure reduction correlated with the increase of the EF FC, in the whole frequency band and in the theta band. This small-sample analysis clearly revealed that ctDCS induced FC changes in the brain network of temporal lobe DRE patients. Our data support the hypothesis that FC changes may contribute to explain the effects of ctDCS in epilepsy, offering a new scenario in the personalization of neuromodulation interventions in epileptic people.


Assuntos
Mapeamento Encefálico , Epilepsia/fisiopatologia , Córtex Motor/fisiopatologia , Lobo Temporal/fisiopatologia , Adolescente , Adulto , Método Duplo-Cego , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Motor/fisiologia , Lobo Temporal/fisiologia , Estimulação Transcraniana por Corrente Contínua , Adulto Jovem
17.
J Neurosci ; 38(3): 586-594, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29196322

RESUMO

In this paper, we pose the following working hypothesis: in humans, transcranial electric stimulation (tES) with a time course that mimics the endogenous activity of its target is capable of altering the target's excitability. In our case, the target was the primary motor cortex (M1). We identified the endogenous neurodynamics of hand M1's subgroups of pyramidal neuronal pools in each of our subjects by applying Functional Source Separation (FSS) to their EEG recordings. We then tested whether the corticospinal excitability of the hand representation under the above described stimulation, which we named transcranial individual neurodynamics stimulation (tIDS), was higher than in the absence of stimulation (baseline). As a check, we compared tIDS with the most efficient noninvasive facilitatory corticospinal tES known so far, which is 20 Hz transcranial alternating current stimulation (tACS). The control conditions were as follows: (1) sham, (2) transcranial random noise stimulation (tRNS) in the same frequency range as tIDS (1-250 Hz), and (3) a low current tIDS (tIDSlow). Corticospinal excitability was measured with motor-evoked potentials under transcranial magnetic stimulation. The mean motor-evoked potential amplitude increase was 31% of the baseline during tIDS (p < 0.001), and it was 15% during tACS (p = 0.096). tRNS, tIDSlow, and sham induced no effects. Whereas tACS did not produce an enhancement in any subject at the individual level, tIDS was successful in producing an enhancement in 8 of the 16 subjects. The results of the present proof-of-principle study showed that proper exploitation of local neurodynamics can enhance the efficacy of personalized tES.SIGNIFICANCE STATEMENT This study demonstrated that, in humans, transcranial individual neurodynamics stimulation (tIDS), which mimics the endogenous dynamics of the target neuronal pools, effectively changes the excitability of these pools. tIDS holds promise for high-efficacy personalized neuromodulations based on individual local neurodynamics.


Assuntos
Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Células Piramidais/fisiologia , Adulto Jovem
18.
Mult Scler ; 24(10): 1366-1374, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28756744

RESUMO

BACKGROUND: The patients suffering from multiple sclerosis (MS) often consider fatigue the most debilitating symptom they experience, but conventional medicine currently offers poorly efficacious therapies. OBJECTIVE: We executed a replication study of an innovative approach for relieving MS fatigue. METHODS: According to the sample size estimate, we recruited 10 fatigued MS patients who received 5-day transcranial direct current stimulation (tDCS) in a randomized, double-blind, Sham-controlled, crossover study, with modified Fatigue Impact Scale (mFIS) score reduction at the end of the treatment as primary outcome. A personalized anodal electrode, shaped on the magnetic resonance imaging (MRI)-derived individual cortical folding, targeted the bilateral whole-body primary somatosensory cortex (S1) with an occipital cathode. RESULTS: The amelioration of fatigue symptoms after Real stimulation (40% of baseline) was significantly larger than after Sham stimulation (14%, p = 0.012). Anodal whole body S1 induced a significant fatigue reduction in mildly disabled MS patients when the fatigue-related symptoms severely hampered their quality of life. CONCLUSION: This second result in an independent group of patients supports the idea that neuromodulation interventions that properly select a personalized target might be a suitable non-pharmacological treatment for MS fatigue.


Assuntos
Fadiga/etiologia , Fadiga/terapia , Esclerose Múltipla Recidivante-Remitente/complicações , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/terapia , Neuronavegação , Medicina de Precisão/métodos , Córtex Somatossensorial/fisiologia , Resultado do Tratamento
19.
Int J Neural Syst ; 28(3): 1750047, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29113518

RESUMO

High time resolution techniques are crucial for investigating the brain in action. Here, we propose a method to identify a section of the upper-limb motor area representation (FS_M1) by means of electroencephalographic (EEG) signals recorded during a completely passive condition (FS_M1bySS). We delivered a galvanic stimulation to the median nerve and we applied to EEG the semi-Blind Source Separation (s-BSS) algorithm named Functional Source Separation (FSS). In order to prove that FS_M1bySS is part of FS_M1, we also collected EEG in a motor condition, i.e. during a voluntary movement task (isometric handgrip) and in a rest condition, i.e. at rest with eyes open and closed. In motor condition, we show that the cortico-muscular coherence (CMC) of FS_M1bySS does not differ from FS_ M1 CMC (0.04 for both sources). Moreover, we show that the FS_M1bySS's ongoing whole band activity during Motor and both rest conditions displays high mutual information and time correlation with FS_M1 (above 0.900 and 0.800, respectively) whereas much smaller ones with the primary somatosensory cortex [Formula: see text] (about 0.300 and 0.500, [Formula: see text]). FS_M1bySS as a marker of the upper-limb FS_M1 representation obtainable without the execution of an active motor task is a great achievement of the FSS algorithm, relevant in most experimental, neurological and psychiatric protocols.


Assuntos
Algoritmos , Mapeamento Encefálico , Potencial Evocado Motor/fisiologia , Atividade Motora/fisiologia , Córtex Motor/fisiologia , Privação Sensorial/fisiologia , Adulto , Eletroencefalografia , Eletromiografia , Feminino , Lateralidade Funcional , Força da Mão , Humanos , Masculino , Pessoa de Meia-Idade , Extremidade Superior/fisiologia , Adulto Jovem
20.
Clin Neurophysiol ; 128(5): 807-813, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28340429

RESUMO

OBJECTIVE: To investigate the EEG-derived functional connectivity at rest (FCR) patterns of fatigued Multiple Sclerosis (MS) patients in order to find good parameters for a future EEG-Neurofeedback intervention to reduce their fatigue symptoms. METHODS: We evaluated FCR between hemispheric homologous areas, via spectral coherence between pairs of corresponding left and right bipolar derivations, in the Theta, Alpha and Beta bands. We estimated FCR in 18MS patients with different levels of fatigue and minimal clinical severity and in 11 age and gender matched healthy controls. We used correlation analysis to assess the relationship between the fatigue scores and the FCR values differing between fatigued MS patients and controls. RESULTS: Among FCR values differing between fatigued MS patients and controls, fatigue symptoms increased with higher Beta temporo-parietal FCR (p=0.00004). Also, positive correlations were found between the fatigue levels and the fronto-frontal FCR in Beta and Theta bands (p=0.0002 and p=0.001 respectively). CONCLUSION: We propose that a future EEG-Neurofeedback system against MS fatigue would train patients to decrease voluntarily the beta coherence between the homologous temporo-parietal areas. SIGNIFICANCE: We extracted a feature for building an EEG-Neurofeedback system against fatigue in MS.


Assuntos
Ritmo beta , Fadiga/fisiopatologia , Esclerose Múltipla/fisiopatologia , Adulto , Estudos de Casos e Controles , Fadiga/etiologia , Retroalimentação Fisiológica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/complicações , Vias Neurais , Lobo Parietal/fisiologia , Lobo Parietal/fisiopatologia , Lobo Temporal/fisiologia , Lobo Temporal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA