Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Acc Chem Res ; 57(11): 1620-1632, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38752454

RESUMO

ConspectusNanoporous frameworks are a large and diverse family of supramolecular materials, whose chemical building units (organic, inorganic, or both) are assembled into a 3D architecture with well-defined connectivity and topology, featuring intrinsic porosity. These materials play a key role in various industrial processes and applications, such as energy production and conversion, fluid separation, gas storage, water harvesting, and many more. The performance and suitability of nanoporous materials for each specific application are directly related to both their physical and chemical properties, and their determination is crucial for process engineering and optimization of performances. In this Account, we focus on some recent developments in the multiscale modeling of physical properties of nanoporous frameworks, highlighting the latest advances in three specific areas: mechanical properties, thermal properties, and adsorption.In the study of the mechanical behavior of nanoporous materials, the past few years have seen a rapid acceleration of research. For example, computational resources have been pooled to create a public large-scale database of elastic constants as part of the Materials Project initiative to accelerate innovation in materials research: those can serve as a basis for data-based discovery of materials with targeted properties, as well as the training of machine learning predictor models.The large-scale prediction of thermal behavior, in comparison, is not yet routinely performed at such a large scale. Tentative databases have been assembled at the DFT level on specific families of materials, such as zeolites, but prediction at larger scale currently requires the use of transferable classical force fields, whose accuracy can be limited.Finally, adsorption is naturally one of the most studied physical properties of nanoporous frameworks, as fluid separation or storage is often the primary target for these materials. We highlight the recent achievements and open challenges for adsorption prediction at a large scale, focusing in particular on the accuracy of computational models and the reliability of comparisons with experimental data available. We detail some recent methodological improvements in the prediction of adsorption-related properties: in particular, we describe the recent research efforts to go beyond the study of thermodynamic quantities (uptake, adsorption enthalpy, and thermodynamic selectivity) and predict transport properties using data-based methods and high-throughput computational schemes. Finally, we stress the importance of data-based methods of addressing all sources of uncertainty.The Account concludes with some perspectives about the latest developments and open questions in data-based approaches and the integration of computational and experimental data together in the materials discovery loop.

2.
Nat Commun ; 15(1): 3585, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678034

RESUMO

Graphene oxide (GO) is the one of the most promising family of materials as atomically thin membranes for water-related molecular separation technologies due to its amphipathic nature and layered structure. Here, we show important aspects of GO on water adsorption from molecular dynamics (MD) simulations, in-situ X-ray diffraction (XRD) measurements, and ex-situ nuclear magnetic resonance (NMR) measurements. Although the MD simulations for GO and the reduced GO models revealed that the flexibility of the interlayer spacing could be attributed to the oxygen-functional groups of GO, the ultra-large GO model cannot well explain the observed swelling of GO from XRD experiments. Our MD simulations propose a realistic GO interlayer structure constructed by staggered stacking of flexible GO sheets, which can explain very well the swelling nature upon water adsorption. The transmission electron microscopic (TEM) observation also supports the non-regular staggered stacking structure of GO. Furthermore, we demonstrate the existence of the two distinct types of adsorbed water molecules in the staggered stacking: water bonded with hydrophilic functional groups and "free" mobile water. Finally, we show that the staggered stacking of GO plays a crucial role in H/D isotopic recognition in water adsorption, as well as the high mobility of water molecules.

3.
Langmuir ; 39(51): 19056-19063, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38088342

RESUMO

We have investigated through molecular simulation the intrusion of electrolytes in two representative pure-silica zeolites, silicalite-1 and chabazite, in which point defects were introduced in varying amounts. We distinguish between two types of defects, considering either "weak" or "strong" silanol nest defects, resulting in different hydration behaviors. In the presence of weak defects, the hydration process occurs through a homogeneous nucleation process, while with strong defects, we observe an initial adsorption followed by a filling of the nanoporous volume at a higher pressure. However, we show that electrolytes do not penetrate the zeolites, and these defects appear to have only marginal influence on the thermodynamics of electrolyte intrusion. While replacing pure water by the electrolyte solution shifts the intrusion pressure toward higher values because of the drop of water saturation vapor pressure, an increase in hydrophilicity of the framework due to point defects has the opposite effect, showing that controlling the amount of defects in zeolites is crucial for storage energy applications.

5.
Chem Sci ; 14(7): 1797-1807, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36819873

RESUMO

Molecular adsorption in nanoporous materials has many large-scale industrial applications ranging from separation to storage. To design the best materials, computational simulations are key to guiding the experimentation and engineering processes. Because nanoporous materials exist in a plethora of forms, we need to speed up the existing simulation tools to be able to screen databases of hundreds of thousands of structures. Here, we describe a new algorithm that quickly calculates adsorption enthalpies by sampling the surface of the material instead of the whole porous space. This surface sampling has been tested on the CoRE MOF 2019 database and has been proven to be more than 2 orders of magnitude faster than the gold standard method (Widom insertion), with an acceptable level of error on an enthalpy value of 0.34 kJ mol-1, and is therefore proposed as a valuable addition to the high-throughput screening toolbox.

6.
J Phys Chem B ; 127(3): 766-776, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36634303

RESUMO

Molecular simulations involving electrolytes are usually performed at a fixed amount of salt ions in the simulation box, reproducing macroscopic concentration. Although this statement is valid in the bulk, the concentration of an electrolyte confined in nanoporous materials such as MOFs or zeolites is greatly affected and remains a priori unknown. The nanoporous material in equilibrium with the bulk electrolyte exchange water and ions at a given chemical potential Δµ in the semi-grand-canonical ensemble, that must be calibrated in order to determine the concentration in the nanoporous material. In this work, we propose an algorithm based on nonequilibrium candidate Monte Carlo (NCMC) moves to ultimately perform MC simulations in contact with a saline reservoir. First, we adapt the Widom insertion technique to calibrate the chemical potential by alchemically transmuting water molecules into ions by using NCMC moves. The chemical potential defines a Monte Carlo osmostat in the semi-grand-constant volume and temperature ensemble (Δµ, N, V, T) to be added in a Monte Carlo simulation where the number of ions fluctuates. In order to validate the method, we adapted the NCMC move to determine the free energy of water solvation and subsequently explore thermodynamics of electrolyte solvation at infinite dilution in water. Finally, we implemented the osmostat in MC simulations initialized with bulk water that are driven toward electrolyte solutions of similar concentration as the saline reservoir. Our results demonstrate that alchemical osmostat for MC simulation is a promising tool for use to sample electrolyte insertion in nanoporous materials.

7.
J Am Chem Soc ; 144(25): 11296-11305, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35713308

RESUMO

Quantum dots (QDs) embedded in inorganic matrices have been extensively studied for their potential applications in lighting, displays, and solar cells. While a significant amount of research studies focused on their experimental fabrication, the origin of their relatively low photoluminescence quantum yield has not been investigated yet, although it severely hinders practical applications. In this study, we use time-dependent density functional theory (TDDFT) to pinpoint the nature of excited states of CdSe QDs embedded in various inorganic matrices. The formation of undercoordinated Se atoms and nonbridging oxygen atoms at the QD/glass interface is responsible for the localization of a hole wave function, leading to the formation of low-energy excited states with weak oscillator strength. These states provide pathways for nonradiative processes and compete with radiative emission. The photoluminescence performance is predicted for CdSe QDs in different matrices and validated by experiments. The results of this study have significant implications for understanding the underlying photophysics of CdSe QDs embedded in inorganic matrices that would facilitate the fabrication of highly luminescent glasses.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Compostos de Selênio , Luminescência
8.
J Am Chem Soc ; 144(19): 8725-8733, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35503249

RESUMO

A metal-organic framework (MOF) CTH-17 based on lanthanum(III) and the conformationally chiral linker 1,2,3,4,5,6-hexakis(4-carboxyphenyl)benzene, cpb6-: [La2(cpb)]·1.5dmf was prepared by the solvothermal method in dimethylformamide (dmf) and characterized by variable-temperature X-ray powder diffraction (VTPXRD), variable-temperature X-ray single-crystal diffraction (SCXRD), and thermogravimetric analysis (TGA). CTH-17 is a rod-MOF with new topology och. It has high-temperature stability with Sohncke space groups P6122/P6522 at 90 K and P622 at 300 and 500 K, all phases characterized with SCXRD and at 293 K also with three-dimensional (3D) electron diffraction. VTPXRD indicates a third phase appearing after 620 K and stable up to 770 K. Gas sorption isotherms with N2 indicate a modest surface area of 231 m2 g-1 for CTH-17, roughly in agreement with the crystal structure. Carbon dioxide sorption reveals a gate-opening effect of CTH-17 where the structure opens up when the loading of CO2 reaches approximately ∼0.45 mmol g-1 or 1 molecule per unit cell. Based on the SCXRD data, this is interpreted as flexibility based on the concerted movements of the propeller-like hexatopic cpb linkers, the movement intramolecularly transmitted by the π-π stacking of the cpb linkers and helped by the fluidity of the LaO6 coordination sphere. This was corroborated by density functional theory (DFT) calculations yielding the chiral phase (P622) as the energy minimum and a completely racemic phase (P6/mmm), with symmetric cpb linkers representing a saddle point in a racemization process.

9.
Adv Mater ; 34(27): e2201502, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35603497

RESUMO

Porosity and surface area analysis play a prominent role in modern materials science. At the heart of this sits the Brunauer-Emmett-Teller (BET) theory, which has been a remarkably successful contribution to the field of materials science. The BET method was developed in the 1930s for open surfaces but is now the most widely used metric for the estimation of surface areas of micro- and mesoporous materials. Despite its widespread use, the calculation of BET surface areas causes a spread in reported areas, resulting in reproducibility problems in both academia and industry. To prove this, for this analysis, 18 already-measured raw adsorption isotherms were provided to sixty-one labs, who were asked to calculate the corresponding BET areas. This round-robin exercise resulted in a wide range of values. Here, the reproducibility of BET area determination from identical isotherms is demonstrated to be a largely ignored issue, raising critical concerns over the reliability of reported BET areas. To solve this major issue, a new computational approach to accurately and systematically determine the BET area of nanoporous materials is developed. The software, called "BET surface identification" (BETSI), expands on the well-known Rouquerol criteria and makes an unambiguous BET area assignment possible.


Assuntos
Reprodutibilidade dos Testes , Adsorção , Porosidade
10.
Nat Chem ; 14(7): 816-822, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35449219

RESUMO

The safe storage of flammable gases, such as acetylene, is essential for current industrial purposes. However, the narrow pressure (P) and temperature range required for the industrial use of pure acetylene (100 < P < 200 kPa at 298 K) and its explosive behaviour at higher pressures make its storage and release challenging. Flexible metal-organic frameworks that exhibit a gated adsorption/desorption behaviour-in which guest uptake and release occur above threshold pressures, usually accompanied by framework deformations-have shown promise as storage adsorbents. Herein, the pressures for gas uptake and release of a series of zinc-based mixed-ligand catenated metal-organic frameworks were controlled by decorating its ligands with two different functional groups and changing their ratio. This affects the deformation energy of the framework, which in turn controls the gated behaviour. The materials offer good performances for acetylene storage with a usable capacity of ~90 v/v (77% of the overall amount) at 298 K and under a practical pressure range (100-150 kPa).

12.
Faraday Discuss ; 231(0): 201-223, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34195736

RESUMO

Nanoporous framework materials are a promising class of materials for energy-efficient technology of xenon/krypton separation by physisorption. Many studies on Xe/Kr separation by adsorption have focused on the determination of structure/property relationships, the description of theoretical limits of performance, and the identification of top-performing materials. Here, we provide a study based on a high-throughput screening of the adsorption of Xe, Kr, and Xe/Kr mixtures in 12 020 experimental MOF materials, to provide a better comprehension of the thermodynamics behind Xe/Kr separation in nanoporous materials and the microscopic origins of Xe/Kr selectivity at both low and ambient pressure.


Assuntos
Criptônio , Xenônio , Adsorção , Ensaios de Triagem em Larga Escala , Termodinâmica
13.
J Am Chem Soc ; 143(31): 12053-12062, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34324323

RESUMO

The organic components in metal-organic frameworks (MOFs) are unique: they are embedded in a crystalline lattice, yet, as they are separated from each other by tunable free space, a large variety of dynamic behavior can emerge. These rotational dynamics of the organic linkers are especially important due to their influence over properties such as gas adsorption and kinetics of guest release. To fully exploit linker rotation, such as in the form of molecular machines, it is necessary to engineer correlated linker dynamics to achieve their cooperative functional motion. Here, we show that for MIL-53, a topology with closely spaced rotors, the phenylene functionalization allows researchers to tune the rotors' steric environment, shifting linker rotation from completely static to rapid motions at frequencies above 100 MHz. For steric interactions that start to inhibit independent rotor motion, we identify for the first time the emergence of coupled rotation modes in linker dynamics. These findings pave the way for function-specific engineering of gear-like cooperative motion in MOFs.

15.
Nat Chem ; 13(8): 778-785, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33972755

RESUMO

Several organic-inorganic hybrid materials from the metal-organic framework (MOF) family have been shown to form stable liquids at high temperatures. Quenching then results in the formation of melt-quenched MOF glasses that retain the three-dimensional coordination bonding of the crystalline phase. These hybrid glasses have intriguing properties and could find practical applications, yet the melt-quench phenomenon has so far remained limited to a few MOF structures. Here we turn to hybrid organic-inorganic perovskites-which occupy a prominent position within materials chemistry owing to their functional properties such as ion transport, photoconductivity, ferroelectricity and multiferroicity-and show that a series of dicyanamide-based hybrid organic-inorganic perovskites undergo melting. Our combined experimental-computational approach demonstrates that, on quenching, they form glasses that largely retain their solid-state inorganic-organic connectivity. The resulting materials show very low thermal conductivities (~0.2 W m-1 K-1), moderate electrical conductivities (10-3-10-5 S m-1) and polymer-like thermomechanical properties.

16.
Nat Mater ; 20(9): 1179-1187, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33859380

RESUMO

Porous materials contain regions of empty space into which guest molecules can be selectively adsorbed and sometimes chemically transformed. This has made them useful in both industrial and domestic applications, ranging from gas separation, energy storage and ion exchange to heterogeneous catalysis and green chemistry. Porous materials are often ordered (crystalline) solids. Order-or uniformity-is frequently held to be advantageous, or even pivotal, to our ability to engineer useful properties in a rational way. Here we highlight the growing evidence that topological disorder can be useful in creating alternative properties in porous materials. In particular, we highlight here several concepts for the creation of novel porous liquids, rationalize routes to porous glasses and provide perspectives on applications for porous liquids and glasses.

18.
J Am Chem Soc ; 143(3): 1503-1512, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33433209

RESUMO

Interpenetration of two or more sublattices is common among many metal-organic frameworks (MOFs). Herein, we study the evolution of one zirconium cluster-based, 3,8-connected MOF from its non-interpenetrated (NU-1200) to interpenetrated (STA-26) isomer. We observe this transient catenation process indirectly using ensemble methods, such as nitrogen porosimetry and X-ray diffraction, and directly, using high-resolution transmission electron microscopy. The approach detailed here will serve as a template for other researchers to monitor the interpenetration of their MOF samples at the bulk and single-particle limits. We investigate the mechanical stability of both lattices experimentally by pressurized in situ X-ray diffraction and nanoindentation as well as computationally with density functional theory calculations. Both lines of study reveal that STA-26 is considerably more mechanically stable than NU-1200. We conclude this study by demonstrating the potential of these MOFs and their mixed phases for the capture of gaseous n-hexane, used as a structural mimic for the chemical warfare agent sulfur mustard gas.

19.
Faraday Discuss ; 225(0): 168-183, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33118556

RESUMO

Unusual adsorption phenomena, such as breathing and negative gas adsorption (NGA), are rare and challenge our thermodynamic understanding of adsorption in deformable porous solids. In particular, NGA appears to break the rules of thermodynamics in these materials by exhibiting a spontaneous release of gas accompanying an increase in pressure. This anomaly relies on long-lived metastable states. A fundamental understanding of this process is desperately required for the discovery of new materials with this exotic property. Interestingly, NGA was initially observed upon adsorption of methane at relatively low temperature, close to the respective standard boiling point of the adsorptive, and no NGA was observed at elevated temperatures. In this contribution, we present an extensive investigation of adsorption of an array of gases at various temperatures on DUT-49, a material which features an NGA transition. Experiments, featuring a wide range of gases and vapors at temperatures ranging from 21-308 K, were used to identify for each guest a critical temperature range in which NGA can be detected. The experimental results were complemented by molecular simulations that help to rationalize the absence of NGA at elevated temperatures, and the non-monotonic behavior present upon temperature decrease. Furthermore, this in-depth analysis highlights the crucial thermodynamic and kinetic conditions for NGA, which are unique to each guest and potentially other solids with similar effects. We expect this exploration to provide detailed guidelines for experimentally discovering NGA and related "rule breaking" phenomena in novel and already known materials, and provide the conditions required for the application of this effect, for example as pressure amplifying materials.

20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA