Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 35(22): 7231-7241, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31117745

RESUMO

Interactions of nonionic poly(ethylene oxide)- b-poly(propylene oxide) (PEO-PPO) block copolymers, known as Pluronics or poloxamers, with cell membranes have been widely studied for a host of biomedical applications. Herein, we report how cholesterol within phosphatidylcholine (POPC) lipid bilayer liposomes and bilayer curvature affects the binding of several PPO-PEO-PPO triblocks with varying PPO content and a tPPO-PEO diblock, where t refers to a tert-butyl end group. Pulsed-field-gradient NMR was employed to quantify the extent of copolymer associated with liposomes prepared with cholesterol concentrations ranging from 0 to 30 mol % relative to the total content of POPC and cholesterol and vesicle extrusion radii of 25, 50, or 100 nm. The fraction of polymer bound to the liposomes was extracted from NMR data on the basis of the very different mobilities of the bound and free polymers in aqueous solution. Cholesterol concentration was manipulated by varying the molar percentage of this sterol in the POPC bilayer preparation. The membrane curvature was varied by adjusting the liposome size through a conventional pore extrusion technique. Although the PPO content significantly influences the overall amount of block copolymer adsorbed to the liposome, we found that polymer binding decreases with increasing cholesterol concentration in a universal fashion, with the fraction of bound polymer dropping 10-fold between 0 and 30 mol % cholesterol relative to the total content of POPC and cholesterol. Increasing the bilayer curvature (decreasing the radius of the liposome) in the absence of cholesterol increases polymer binding between 2- and 4-fold over the range of liposome sizes studied. These results demonstrate that cholesterol plays a dominant role, and bilayer curvature has a less significant impact as the curvature decreases, on polymer-membrane association.


Assuntos
Colesterol/química , Bicamadas Lipídicas/química , Polímeros/química , Espectroscopia de Ressonância Magnética , Fosfatidilcolinas/química , Propilenoglicóis/química
2.
ACS Macro Lett ; 6(4): 452-457, 2017 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35610863

RESUMO

We report a new strategy toward polymer-protein conjugates using a grafting-from method that employs photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. Initial screening of reaction conditions showed rapid polymerization of acrylamides under high dilution in water using eosin Y as a photocatalyst in the presence of a tertiary amine. A lysozyme-modified chain transfer agent allowed the same conditions to be utilized for grafting-from polymerizations, and we further demonstrated the broad scope of this technique by polymerizing acrylic and styrenic monomers. Finally, retention of the RAFT end group was suggested by successful chain extension with N-isopropylacrylamide from the polymer-protein conjugates to form block copolymer-protein conjugates. This strategy should expand the capabilities of grafting-from proteins with RAFT polymerization under mild conditions to afford diverse functional materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA