Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Vet Res ; 55(1): 81, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926765

RESUMO

The escalation of antibiotic resistance, pandemics, and nosocomial infections underscores the importance of research in both animal and human infectious diseases. Recent advancements in three-dimensional tissue cultures, or "organoids", have revolutionized the development of in vitro models for infectious diseases. Our study conducts a bibliometric analysis on the use of organoids in modeling infectious diseases, offering an in-depth overview of this field's current landscape. We examined scientific contributions from 2009 onward that focused on organoids in host‒pathogen interactions using the Web of Science Core Collection and OpenAlex database. Our analysis included temporal trends, reference aging, author, and institutional productivity, collaborative networks, citation metrics, keyword cluster dynamics, and disruptiveness of organoid models. VOSviewer, CiteSpace, and Python facilitated this analytical assessment. The findings reveal significant growth and advancements in organoid-based infectious disease research. Analysis of keywords and impactful publications identified three distinct developmental phases in this area that were significantly influenced by outbreaks of Zika and SARS-CoV-2 viruses. The research also highlights the synergistic efforts between academia and publishers in tackling global pandemic challenges. Through mostly consolidating research efforts, organoids are proving to be a promising tool in infectious disease research for both human and animal infectious disease. Their integration into the field necessitates methodological refinements for better physiological emulation and the establishment of extensive organoid biobanks. These improvements are crucial for fully harnessing the potential of organoids in understanding infectious diseases and advancing the development of targeted treatments and vaccines.


Assuntos
Bibliometria , Organoides , Organoides/virologia , Animais , Humanos , Doenças Transmissíveis/veterinária , Doenças Transmissíveis/epidemiologia , Modelos Animais de Doenças , COVID-19/epidemiologia , COVID-19/virologia
2.
Viruses ; 16(4)2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38675888

RESUMO

The pandemic caused by SARS-CoV-2 is still a major health problem. Newly emerging variants and long-COVID-19 represent a challenge for the global health system. In particular, individuals in developing countries with insufficient health care need easily accessible, affordable and effective treatments of COVID-19. Previous studies have demonstrated the efficacy of functional inhibitors of acid sphingomyelinase against infections with various viruses, including early variants of SARS-CoV-2. This work investigated whether the acid sphingomyelinase inhibitors fluoxetine and sertraline, usually used as antidepressant molecules in clinical practice, can inhibit the replication of the former and recently emerged SARS-CoV-2 variants in vitro. Fluoxetine and sertraline potently inhibited the infection with pseudotyped virus-like particles and SARS-CoV-2 variants D614G, alpha, delta, omicron BA.1 and omicron BA.5. These results highlight fluoxetine and sertraline as priority candidates for large-scale phase 3 clinical trials at different stages of SARS-CoV-2 infections, either alone or in combination with other medications.


Assuntos
Antivirais , COVID-19 , Fluoxetina , SARS-CoV-2 , Sertralina , Replicação Viral , SARS-CoV-2/efeitos dos fármacos , Sertralina/farmacologia , Fluoxetina/farmacologia , Replicação Viral/efeitos dos fármacos , Humanos , Antivirais/farmacologia , Chlorocebus aethiops , Células Vero , COVID-19/virologia , Animais , Tratamento Farmacológico da COVID-19
3.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37631022

RESUMO

Prior evidence indicates the potential central role of the acid sphingomyelinase (ASM)/ceramide system in the infection of cells with SARS-CoV-2. We conducted a multicenter retrospective observational study including 72,105 adult patients with laboratory-confirmed SARS-CoV-2 infection who were admitted to 36 AP-HP (Assistance Publique-Hôpitaux de Paris) hospitals from 2 May 2020 to 31 August 2022. We examined the association between the ongoing use of medications functionally inhibiting acid sphingomyelinase (FIASMA), which reduces the infection of cells with SARS-CoV-2 in vitro, upon hospital admission with 28-day all-cause mortality in a 1:1 ratio matched analytic sample based on clinical characteristics, disease severity and other medications (N = 9714). The univariate Cox regression model of the matched analytic sample showed that FIASMA medication use at admission was associated with significantly lower risks of 28-day mortality (HR = 0.80; 95% CI = 0.72-0.88; p < 0.001). In this multicenter observational study, the use of FIASMA medications was significantly and substantially associated with reduced 28-day mortality among adult patients hospitalized with COVID-19. These findings support the continuation of these medications during the treatment of SARS-CoV-2 infections. Randomized clinical trials (RCTs) are needed to confirm these results, starting with the molecules with the greatest effect size in the study, e.g., fluoxetine, escitalopram, and amlodipine.

4.
PLoS Pathog ; 19(8): e1011559, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37619220

RESUMO

Mycobacterium abscessus (Mabs) drives life-shortening mortality in cystic fibrosis (CF) patients, primarily because of its resistance to chemotherapeutic agents. To date, our knowledge on the host and bacterial determinants driving Mabs pathology in CF patient lung remains rudimentary. Here, we used human airway organoids (AOs) microinjected with smooth (S) or rough (R-)Mabs to evaluate bacteria fitness, host responses to infection, and new treatment efficacy. We show that S Mabs formed biofilm, and R Mabs formed cord serpentines and displayed a higher virulence. While Mabs infection triggers enhanced oxidative stress, pharmacological activation of antioxidant pathways resulted in better control of Mabs growth and reduced virulence. Genetic and pharmacological inhibition of the CFTR is associated with better growth and higher virulence of S and R Mabs. Finally, pharmacological activation of antioxidant pathways inhibited Mabs growth, at least in part through the quinone oxidoreductase NQO1, and improved efficacy in combination with cefoxitin, a first line antibiotic. In conclusion, we have established AOs as a suitable human system to decipher mechanisms of CF-driven respiratory infection by Mabs and propose boosting of the NRF2-NQO1 axis as a potential host-directed strategy to improve Mabs infection control.


Assuntos
Fibrose Cística , Mycobacterium abscessus , Humanos , Fibrose Cística/tratamento farmacológico , Antioxidantes , Oxirredução , Estresse Oxidativo
5.
J Exp Med ; 220(10)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37642996

RESUMO

Human airway and corneal epithelial cells, which are critically altered during chronic infections mediated by Pseudomonas aeruginosa, specifically express the inflammasome sensor NLRP1. Here, together with a companion study, we report that the NLRP1 inflammasome detects exotoxin A (EXOA), a ribotoxin released by P. aeruginosa type 2 secretion system (T2SS), during chronic infection. Mechanistically, EXOA-driven eukaryotic elongation factor 2 (EEF2) ribosylation and covalent inactivation promote ribotoxic stress and subsequent NLRP1 inflammasome activation, a process shared with other EEF2-inactivating toxins, diphtheria toxin and cholix toxin. Biochemically, irreversible EEF2 inactivation triggers ribosome stress-associated kinases ZAKα- and P38-dependent NLRP1 phosphorylation and subsequent proteasome-driven functional degradation. Finally, cystic fibrosis cells from patients exhibit exacerbated P38 activity and hypersensitivity to EXOA-induced ribotoxic stress-dependent NLRP1 inflammasome activation, a process inhibited by the use of ZAKα inhibitors. Altogether, our results show the importance of P. aeruginosa virulence factor EXOA at promoting NLRP1-dependent epithelial damage and identify ZAKα as a critical sensor of virulence-inactivated EEF2.


Assuntos
Fibrose Cística , Eucariotos , Humanos , Fator 2 de Elongação de Peptídeos , Inflamassomos , Citoplasma , Proteínas NLR
6.
Nature ; 617(7960): 386-394, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37100912

RESUMO

Inflammation is a complex physiological process triggered in response to harmful stimuli1. It involves cells of the immune system capable of clearing sources of injury and damaged tissues. Excessive inflammation can occur as a result of infection and is a hallmark of several diseases2-4. The molecular bases underlying inflammatory responses are not fully understood. Here we show that the cell surface glycoprotein CD44, which marks the acquisition of distinct cell phenotypes in the context of development, immunity and cancer progression, mediates the uptake of metals including copper. We identify a pool of chemically reactive copper(II) in mitochondria of inflammatory macrophages that catalyses NAD(H) redox cycling by activating hydrogen peroxide. Maintenance of NAD+ enables metabolic and epigenetic programming towards the inflammatory state. Targeting mitochondrial copper(II) with supformin (LCC-12), a rationally designed dimer of metformin, induces a reduction of the NAD(H) pool, leading to metabolic and epigenetic states that oppose macrophage activation. LCC-12 interferes with cell plasticity in other settings and reduces inflammation in mouse models of bacterial and viral infections. Our work highlights the central role of copper as a regulator of cell plasticity and unveils a therapeutic strategy based on metabolic reprogramming and the control of epigenetic cell states.


Assuntos
Plasticidade Celular , Cobre , Inflamação , Transdução de Sinais , Animais , Camundongos , Cobre/metabolismo , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , NAD/metabolismo , Transdução de Sinais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Peróxido de Hidrogênio/metabolismo , Epigênese Genética/efeitos dos fármacos , Metformina/análogos & derivados , Oxirredução , Plasticidade Celular/efeitos dos fármacos , Plasticidade Celular/genética , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/genética
7.
Cells ; 12(6)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36980185

RESUMO

The mammalian 20S catalytic core of the proteasome is made of 14 different subunits (α1-7 and ß1-7) but exists as different subtypes depending on the cell type. In immune cells, for instance, constitutive catalytic proteasome subunits can be replaced by the so-called immuno-catalytic subunits, giving rise to the immunoproteasome. Proteasome activity is also altered by post-translational modifications (PTMs) and by genetic variants. Immunochemical methods are commonly used to investigate these PTMs whereby protein-tagging is necessary to monitor their effect on 20S assembly. Here, we present a new miniaturized workflow combining top-down and bottom-up mass spectrometry of immunopurified 20S proteasomes that analyze the proteasome assembly status as well as the full proteoform footprint, revealing PTMs, mutations, single nucleotide polymorphisms (SNPs) and induction of immune-subunits in different biological samples, including organoids, biopsies and B-lymphoblastoid cell lines derived from patients with proteasome-associated autoinflammatory syndromes (PRAAS). We emphasize the benefits of using top-down mass spectrometry in preserving the endogenous conformation of protein modifications, while enabling a rapid turnaround (1 h run) and ensuring high sensitivity (1-2 pmol) and demonstrate its capacity to semi-quantify constitutive and immune proteasome subunits.


Assuntos
Complexo de Endopeptidases do Proteassoma , Processamento de Proteína Pós-Traducional , Animais , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Citoplasma/metabolismo , Espectrometria de Massas/métodos , Linhagem Celular , Mamíferos/metabolismo
8.
Biol Psychiatry Glob Open Sci ; 3(1): 56-67, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35013734

RESUMO

Background: Prior research suggests that psychiatric disorders could be linked to increased mortality among patients with COVID-19. However, whether all or specific psychiatric disorders are intrinsic risk factors of death in COVID-19 or whether these associations reflect the greater prevalence of medical risk factors in people with psychiatric disorders has yet to be evaluated. Methods: We performed an observational, multicenter, retrospective cohort study to examine the association between psychiatric disorders and mortality among patients hospitalized for laboratory-confirmed COVID-19 at 36 Greater Paris University hospitals. Results: Of 15,168 adult patients, 857 (5.7%) had an ICD-10 diagnosis of psychiatric disorder. Over a mean follow-up period of 14.6 days (SD = 17.9), 326 of 857 (38.0%) patients with a diagnosis of psychiatric disorder died compared with 1276 of 14,311 (8.9%) patients without such a diagnosis (odds ratio 6.27, 95% CI 5.40-7.28, p < .01). When adjusting for age, sex, hospital, current smoking status, and medications according to compassionate use or as part of a clinical trial, this association remained significant (adjusted odds ratio 3.27, 95% CI 2.78-3.85, p < .01). However, additional adjustments for obesity and number of medical conditions resulted in a nonsignificant association (adjusted odds ratio 1.02, 95% CI 0.84-1.23, p = .86). Exploratory analyses after the same adjustments suggested that a diagnosis of mood disorders was significantly associated with reduced mortality, which might be explained by the use of antidepressants. Conclusions: These findings suggest that the increased risk of COVID-19-related mortality in individuals with psychiatric disorders hospitalized for COVID-19 might be explained by the greater number of medical conditions and the higher prevalence of obesity in this population and not by the underlying psychiatric disease.

9.
Therapie ; 78(1): 10-18, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36528417

RESUMO

The repurposing of a medicine already on the market to a new indication could be an opportunity to respond rapidly to a therapeutic need not yet covered, particularly in the context of rare and neglected diseases, or health emergencies. However, at each stage, difficulties may arise that will prevent the repurposed drug from being provided to patients. Beyond fortuity or a systematic strategy to detect a useful pharmacological effect, the implementation of the preclinical and clinical stages is sometimes complicated by the difficulty of accessing the molecule and its pharmaceutical data. Furthermore, relevant clinical results will not always be sufficient to ensure that a marketing authorisation is obtained or that patients receive satisfactory care. In addition to describing these various obstacles, the round table provided an opportunity to put forward recommendations for overcoming them, in particular the creation of a public-private partnership structure with sufficient funding to be able to offer individualised support for projects up to and including the marketing application.


Assuntos
Reposicionamento de Medicamentos , Humanos , Parcerias Público-Privadas , Marketing
11.
Int J Mol Sci ; 23(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36362409

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic continues to cause significant morbidity and mortality worldwide. Since a large portion of the world's population is currently unvaccinated or incompletely vaccinated and has limited access to approved treatments against COVID-19, there is an urgent need to continue research on treatment options, especially those at low cost and which are immediately available to patients, particularly in low- and middle-income countries. Prior in vitro and observational studies have shown that fluoxetine, possibly through its inhibitory effect on the acid sphingomyelinase/ceramide system, could be a promising antiviral and anti-inflammatory treatment against COVID-19. In this report, we evaluated the potential antiviral and anti-inflammatory activities of fluoxetine in a K18-hACE2 mouse model of SARS-CoV-2 infection, and against variants of concern in vitro, i.e., SARS-CoV-2 ancestral strain, Alpha B.1.1.7, Gamma P1, Delta B1.617 and Omicron BA.5. Fluoxetine, administrated after SARS-CoV-2 infection, significantly reduced lung tissue viral titres and expression of several inflammatory markers (i.e., IL-6, TNFα, CCL2 and CXCL10). It also inhibited the replication of all variants of concern in vitro. A modulation of the ceramide system in the lung tissues, as reflected by the increase in the ratio HexCer 16:0/Cer 16:0 in fluoxetine-treated mice, may contribute to explain these effects. Our findings demonstrate the antiviral and anti-inflammatory properties of fluoxetine in a K18-hACE2 mouse model of SARS-CoV-2 infection, and its in vitro antiviral activity against variants of concern, establishing fluoxetine as a very promising candidate for the prevention and treatment of SARS-CoV-2 infection and disease pathogenesis.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Ceramidas , Modelos Animais de Doenças , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico
12.
J Clin Med ; 11(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36233753

RESUMO

To reduce Coronavirus Disease 2019 (COVID-19)-related mortality and morbidity, widely available oral COVID-19 treatments are urgently needed. Certain antidepressants, such as fluvoxamine or fluoxetine, may be beneficial against COVID-19. We included 388,945 adult inpatients who tested positive for SARS-CoV-2 at 36 AP−HP (Assistance Publique−Hôpitaux de Paris) hospitals from 2 May 2020 to 2 November 2021. We compared the prevalence of antidepressant use at admission in a 1:1 ratio matched analytic sample with and without COVID-19 (N = 82,586), and assessed its association with 28-day all-cause mortality in a 1:1 ratio matched analytic sample of COVID-19 inpatients with and without antidepressant use at admission (N = 1482). Antidepressant use was significantly less prevalent in inpatients with COVID-19 than in a matched control group of inpatients without COVID-19 (1.9% versus 4.8%; Odds Ratio (OR) = 0.38; 95%CI = 0.35−0.41, p < 0.001). Antidepressant use was significantly associated with reduced 28-day mortality among COVID-19 inpatients (12.8% versus 21.2%; OR = 0.55; 95%CI = 0.41−0.72, p < 0.001), particularly at daily doses of at least 40 mg fluoxetine equivalents. Antidepressants with high FIASMA (Functional Inhibitors of Acid Sphingomyelinase) activity seem to drive both associations. These treatments may reduce SARS-CoV-2 infections and COVID-19-related mortality in inpatients, and may be appropriate for prophylaxis and/or COVID-19 therapy for outpatients or inpatients.

13.
ACS Infect Dis ; 8(10): 2171-2186, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36107992

RESUMO

There is an unmet medical need for effective treatments against Mycobacterium abscessus pulmonary infections, to which cystic fibrosis (CF) patients are particularly vulnerable. Recent studies showed that the antitubercular drug isoniazid is inactive against M. abscessus due to the incapacity of the catalase-peroxidase to convert the pro-drug into a reactive metabolite that inhibits the enoyl-ACP reductase InhA. To validate InhAMAB as a druggable target in M. abscessus, we assayed the activity of NITD-916, a 4-hydroxy-2-pyridone lead candidate initially described as a direct inhibitor of InhA that bypasses KatG bioactivation in Mycobacterium tuberculosis. The compound displayed low MIC values against rough and smooth clinical isolates in vitro and significantly reduced the bacterial burden inside human macrophages. Moreover, treatment with NITD-916 reduced the number and size of intracellular mycobacterial cords, regarded as markers of the severity of the infection. Importantly, NITD-916 significantly lowered the M. abscessus burden in CF-derived lung airway organoids. From a mechanistic perspective, NITD-916 abrogated de novo synthesis of mycolic acids and NITD-916-resistant spontaneous mutants harbored point mutations in InhAMAB at residue 96. That NITD-916 targets InhAMAB directly without activation requirements was confirmed genetically and by resolving the crystal structure of the protein in complex with NADH and NITD-916. These findings collectively indicate that InhAMAB is an attractive target to be exploited for future chemotherapeutic developments against this difficult-to-treat mycobacterium and highlight the potential of NITD-916 derivatives for further evaluation in preclinical settings.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Pró-Fármacos , Antituberculosos/química , Proteínas de Bactérias/metabolismo , Catalase/metabolismo , Catalase/farmacologia , Catalase/uso terapêutico , Humanos , Isoniazida/química , Isoniazida/farmacologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium abscessus/genética , Ácidos Micólicos/metabolismo , NAD/metabolismo , Pró-Fármacos/farmacologia
14.
PLoS Pathog ; 18(7): e1010305, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35849616

RESUMO

Multiple regulated neutrophil cell death programs contribute to host defense against infections. However, despite expressing all necessary inflammasome components, neutrophils are thought to be generally defective in Caspase-1-dependent pyroptosis. By screening different bacterial species, we found that several Pseudomonas aeruginosa (P. aeruginosa) strains trigger Caspase-1-dependent pyroptosis in human and murine neutrophils. Notably, deletion of Exotoxins U or S in P. aeruginosa enhanced neutrophil death to Caspase-1-dependent pyroptosis, suggesting that these exotoxins interfere with this pathway. Mechanistically, P. aeruginosa Flagellin activates the NLRC4 inflammasome, which supports Caspase-1-driven interleukin (IL)-1ß secretion and Gasdermin D (GSDMD)-dependent neutrophil pyroptosis. Furthermore, P. aeruginosa-induced GSDMD activation triggers Calcium-dependent and Peptidyl Arginine Deaminase-4-driven histone citrullination and translocation of neutrophil DNA into the cell cytosol without inducing extracellular Neutrophil Extracellular Traps. Finally, we show that neutrophil Caspase-1 contributes to IL-1ß production and susceptibility to pyroptosis-inducing P. aeruginosa strains in vivo. Overall, we demonstrate that neutrophils are not universally resistant for Caspase-1-dependent pyroptosis.


Assuntos
Inflamassomos , Piroptose , Animais , Proteínas Reguladoras de Apoptose/genética , Caspase 1/metabolismo , Exotoxinas/metabolismo , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/microbiologia , Pseudomonas aeruginosa/metabolismo
15.
Mol Cell ; 82(13): 2385-2400.e9, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35594856

RESUMO

Inflammation observed in SARS-CoV-2-infected patients suggests that inflammasomes, proinflammatory intracellular complexes, regulate various steps of infection. Lung epithelial cells express inflammasome-forming sensors and constitute the primary entry door of SARS-CoV-2. Here, we describe that the NLRP1 inflammasome detects SARS-CoV-2 infection in human lung epithelial cells. Specifically, human NLRP1 is cleaved at the Q333 site by multiple coronavirus 3CL proteases, which triggers inflammasome assembly and cell death and limits the production of infectious viral particles. Analysis of NLRP1-associated pathways unveils that 3CL proteases also inactivate the pyroptosis executioner Gasdermin D (GSDMD). Subsequently, caspase-3 and GSDME promote alternative cell pyroptosis. Finally, analysis of pyroptosis markers in plasma from COVID-19 patients with characterized severe pneumonia due to autoantibodies against, or inborn errors of, type I interferons (IFNs) highlights GSDME/caspase-3 as potential markers of disease severity. Overall, our findings identify NLRP1 as a sensor of SARS-CoV-2 infection in lung epithelia.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , Células Epiteliais , Inflamassomos , Proteínas NLR , SARS-CoV-2 , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Caspase 3/metabolismo , Proteases 3C de Coronavírus/genética , Proteases 3C de Coronavírus/metabolismo , Células Epiteliais/metabolismo , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Pulmão/metabolismo , Pulmão/virologia , Proteínas NLR/genética , Proteínas NLR/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Piroptose , SARS-CoV-2/enzimologia , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade
16.
Transl Psychiatry ; 12(1): 90, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241663

RESUMO

The acid sphingomyelinase (ASM)/ceramide system may provide a useful framework for better understanding SARS-CoV-2 infection and the repurposing of psychotropic medications functionally inhibiting the acid sphingomyelinase/ceramide system (named FIASMA psychotropic medications) against COVID-19. We examined the potential usefulness of FIASMA psychotropic medications in patients with psychiatric disorders hospitalized for severe COVID-19, in an observational multicenter study conducted at Greater Paris University hospitals. Of 545 adult inpatients, 164 (30.1%) received a FIASMA psychotropic medication upon hospital admission for COVID-19. We compared the composite endpoint of intubation or death between patients who received a psychotropic FIASMA medication at baseline and those who did not in time-to-event analyses adjusted for sociodemographic characteristics, psychiatric and other medical comorbidity, and other medications. FIASMA psychotropic medication use at baseline was significantly associated with reduced risk of intubation or death in both crude (HR = 0.42; 95%CI = 0.31-0.57; p < 0.01) and primary inverse probability weighting (IPW) (HR = 0.50; 95%CI = 0.37-0.67; p < 0.01) analyses. This association was not specific to one FIASMA psychotropic class or medication. Patients taking a FIASMA antidepressant at baseline had a significantly reduced risk of intubation or death compared with those taking a non-FIASMA antidepressant at baseline in both crude (HR = 0.57; 95%CI = 0.38-0.86; p < 0.01) and primary IPW (HR = 0.57; 95%CI = 0.37-0.87; p < 0.01) analyses. These associations remained significant in multiple sensitivity analyses. Our results show the potential importance of the ASM/ceramide system framework in COVID-19 and support the continuation of FIASMA psychotropic medications in these patients and the need of large- scale clinical trials evaluating FIASMA medications, and particularly FIASMA antidepressants, against COVID-19.


Assuntos
COVID-19 , Transtornos Mentais , Adulto , Hospitalização , Humanos , Intubação Intratraqueal , Transtornos Mentais/tratamento farmacológico , Psicotrópicos/uso terapêutico , SARS-CoV-2
17.
Sci Rep ; 12(1): 5118, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332201

RESUMO

Nigratine (also known as 6E11), a flavanone derivative of a plant natural product, was characterized as highly specific non-ATP competitive inhibitor of RIPK1 kinase, one of the key components of necroptotic cell death signaling. We show here that nigratine inhibited both necroptosis (induced by Tumor Necrosis Factor-α) and ferroptosis (induced by the small molecules glutamate, erastin, RSL3 or cumene hydroperoxide) with EC50 in the µM range. Taken together, our data showed that nigratine is a dual inhibitor of necroptosis and ferroptosis cell death pathways. These findings open potential new therapeutic avenues for treating complex necrosis-related diseases.


Assuntos
Ferroptose , Apoptose , Morte Celular/fisiologia , Humanos , Necroptose , Necrose , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
18.
Mol Microbiol ; 117(3): 682-692, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34605588

RESUMO

Respiratory infections remain a major global health concern. Tuberculosis is one of the top 10 causes of death worldwide, while infections with Non-Tuberculous Mycobacteria are rising globally. Recent advances in human tissue modeling offer a unique opportunity to grow different human "organs" in vitro, including the human airway, that faithfully recapitulates lung architecture and function. Here, we have explored the potential of human airway organoids (AOs) as a novel system in which to assess the very early steps of mycobacterial infection. We reveal that Mycobacterium tuberculosis (Mtb) and Mycobacterium abscessus (Mabs) mainly reside as extracellular bacteria and infect epithelial cells with very low efficiency. While the AO microenvironment was able to control, but not eliminate Mtb, Mabs thrives. We demonstrate that AOs responded to infection by modulating cytokine, antimicrobial peptide, and mucin gene expression. Given the importance of myeloid cells in mycobacterial infection, we co-cultured infected AOs with human monocyte-derived macrophages and found that these cells interact with the organoid epithelium. We conclude that adult stem cell (ASC)-derived AOs can be used to decipher very early events of mycobacteria infection in human settings thus offering new avenues for fundamental and therapeutic research.


Assuntos
Mycobacterium abscessus , Mycobacterium tuberculosis , Tuberculose , Humanos , Macrófagos/microbiologia , Micobactérias não Tuberculosas , Organoides , Tuberculose/microbiologia
20.
Front Immunol ; 13: 1086413, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605196

RESUMO

Introduction: Confronted with the emerging threat of antimicrobial resistance, the development of alternative strategies to limit the use of antibiotics or potentiate their effect through synergy with the immune system is urgently needed. Many natural or synthetic biological response modifiers have been investigated in this context. Among them, ß-glucans, a type of soluble or insoluble polysaccharide composed of a linear or branched string of glucose molecules produced by various cereals, bacteria, algae, and inferior (yeast) and superior fungi (mushrooms) have garnered interest in the scientific community, with not less than 10,000 publications over the last two decades. Various biological activities of ß-glucans have been reported, such as anticancer, antidiabetic and immune-modulating effects. In vitro, yeast ß-glucans are known to markedly increase cytokine secretion of monocytes/macrophages during a secondary challenge, a phenomenon called immune training. Methods: Here, we orally delivered ß-glucans derived from the yeast S. cerevisiae to mice that were further challenged with Escherichia coli. Results: ß-glucan supplementation protected the mice from E. coli intraperitoneal and intra-mammary infections, as shown by a lower bacterial burden and greatly diminished tissue damage. Surprisingly, this was not associated with an increased local immune response. In addition, granulocyte recruitment was transient and limited, as well as local cytokine secretion, arguing for faster resolution of the inflammatory response. Furthermore, ex-vivo evaluation of monocytes/macrophages isolated or differentiated from ß-glucan-supplemented mice showed these cells to lack a trained response versus those from control mice. Conclusion: In conclusion, dietary ß-glucans can improve the outcome of Escherichia coli infections and dampen tissue damages associated to excessive inflammatory response. The mechanisms associated with such protection are not necessarily linked to immune system hyper-activation or immune training.


Assuntos
Fermento Seco , beta-Glucanas , Camundongos , Animais , beta-Glucanas/farmacologia , Saccharomyces cerevisiae , Escherichia coli , Monócitos , Macrófagos , Citocinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA