Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 842: 156713, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35714747

RESUMO

China has pledged to achieve carbon neutrality by 2060 to address global climate change, and achieving carbon neutrality in rice fields is a vital component of this commitment. However, the current status of carbon neutrality in rice fields in China is unclear, and there are few feasible strategies to achieve its successful implementation. Therefore, this study calculated the net carbon sequestration rate (NCSR, i.e., carbon sequestration minus carbon emissions) of rice fields in China from 2002 to 2017 to clarify the carbon neutrality status of Chinese rice fields. Furthermore, the effects of field management measures, rice sown area, and rice yield on NCSR were analyzed to identify suitable carbon neutralization pathways in Chinese rice fields. Our findings indicated that the annual carbon sequestration rate in rice fields was lower than the carbon emissions, resulting in continuous net emissions of 195.49 Tg CO2-eq yr-1. The NCSR of paddy fields increased first and then decreased with increases in rice sown area and yield. Meta-analysis indicated that management measures such as water conservation and biochar significantly increased NCSR by ~5766.50 kg CO2-eq ha-1 yr-1 and 22,296.62 kg CO2-eq ha-1 yr-1, respectively. Our findings suggests that proper control of rice sown area and the adoption of reasonable field management measures (water conservation and biochar) can promote carbon neutrality in Chinese rice fields.


Assuntos
Oryza , Agricultura/métodos , Carbono/análise , Dióxido de Carbono/análise , Sequestro de Carbono , China , Metano/análise , Óxido Nitroso/análise , Solo
2.
Sci Total Environ ; 791: 147890, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34412413

RESUMO

In recent years, many rotational and integrated rice production systems coupled with several greenhouse gas (GHG) emissions mitigation practices have been developed and adopted for demand of low carbon production. However, there have been only few studies about comparisons on the balance between high production and mitigation of GHG emissions in different rice production systems. We therefore aimed to evaluate economic output and carbon footprint of different rice production systems, based on several long-term experiments conducted by our lab. CH4 and N2O emission were measured by the same static chamber/gas chromatogram measurement procedure in different rice production systems, including rice-fallow, rice-rapeseed, rice-wheat, double rice, and integrated rice-crayfish production system. Then, we applied the DeNitrification DeComposition model to simulate CH4 and N2O emission over different years under the same condition for comparison. Carbon footprint was calculated following the process-based life cycle assessment (PLCA) methodology. The economic benefit of rice production systems was assessed by cost-benefit analysis. According to the analysis, the double-rice production system exhibited the highest intensity of carbon footprint (ICF = 4.14 kg CO2-eq yuan-1), rain-fed treatment in the rice-rapeseed system had the lowest (ICF = 0.68 kg CO2-eq yuan-1). The intensity of carbon footprint in different treatments in the integrated rice-crayfish production system was around 0.8 kg CO2-eq yuan-1. Overall, the results of this case study suggest: (1) the proposed practices in different rice production systems are no straw returning (rice-fallow), no-tillage without straw returning (rice-wheat), rain-fed farming (rice-rapeseed), no insect and no inoculation (double rice), and feeding with straw returning (rice-crayfish); (2) rotational and integrated systems can achieve high net output with low carbon emission; (3) reducing the amount of nitrogenous fertilizer application is the most important and effective GHG mitigation practice for rotational systems.


Assuntos
Gases de Efeito Estufa , Oryza , Agricultura , Pegada de Carbono , Fertilizantes
3.
Chemosphere ; 274: 129971, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33979915

RESUMO

Soil organic carbon plays considerable roles in binding soil particles together forming aggregates. Carbon (C) incorporated within these aggregates is thought to be microbially processed; thus, investigating changes in microbial activities i.e. dehydrogenase, urease, catalase and phosphatase enzymes may explain, to some extent, the dynamics and probably mechanisms responsible of formation of these aggregates. Since, soil water content (SWC) may take part in stimulating/lessening activities of organic matter decomposers; thus, this study aimed at investigating the effects of rice straw as a source of organic C in combination with variable SWC on bioaccumulation of C within different soil aggregate size fractions (2000-250, 250-53 and < 53 µm) and hence formation of these aggregates. To achieve these objectives, a pot experiment was conducted for 90 days, including five water levels i.e. maintaining a water head 1 cm above the soil surface (W1), 100% of the saturation percentage, SP (W2), 80% of SP (W3), 65% of SP (W4) and 50% of SP (W5), beside of two rates of applied rice straw i.e. 0 and 15 g kg-1 (w/w). Results revealed that application of rice straw at a rate of 15 g kg-1 increased the activities of dehydrogenase, urease, neutral phosphatase and catalase enzymes within the first 60 days after application; thereafter, activities of the first three enzymes decreased considerably. Likewise, formation of soil macro- (2000-250 µm) and micro-aggregates (250-53 µm) increased by the end of the experimental period. The highest concentrations of soil carbon were incorporated within soil macro-aggregate, whereas the least C content was found within the "silt + clay" fraction. Increasing SWC resulted in significant reductions in activities of the aforementioned enzymes and consequent reductions occurred in soil aggregation. Carbon content within aggregates sized <250 µm were significantly correlated with the percentage of these aggregates in soil. Thus, soil aggregation is thought to be the byproduct of an aerobic biosynthetic microbial process in which more stable hydrophobic organic C existed mainly in macropores. This process probably occurred within the first 60 days after RS application.


Assuntos
Oryza , Solo , Agricultura , Carbono , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA