RESUMO
The efficient natural transformation of Neisseria meningitidis allows the rapid construction of bacterial mutants in which the genes of interest are interrupted or replaced by antibiotic-resistance cassettes. However, this proved to be a double-edged sword, i.e., although facilitating the genetic characterization of this important human pathogen, it has limited the development of strategies for constructing markerless mutants without antibiotic-resistance markers. In addition, efficient tools for complementation or labeling are also lacking in N. meningitidis. In this study, we significantly expand the meningococcal genetic toolbox by developing new and efficient tools for the construction of markerless mutants (using a dual counterselection strategy), genetic complementation (using integrative vectors), and cell labeling (using a self-labeling protein tag). This expanded toolbox paves the way for more in-depth genetic characterization of N. meningitidis and might also be useful in other Neisseria species.IMPORTANCENeisseria meningitidis and Neisseria gonorrhoeae are two important human pathogens. Research focusing on these bacteria requires genetic engineering, which is facilitated by their natural ability to undergo transformation. However, the ease of mutant engineering has led the Neisseria community to neglect the development of more sophisticated tools for gene editing, particularly for N. meningitidis. In this study, we have significantly expanded the meningococcal genetic toolbox by developing novel and efficient tools for markerless mutant construction, genetic complementation, and cell tagging. This expanded toolbox paves the way for more in-depth genetic characterization of N. meningitidis and might also be useful in other Neisseria species.
Assuntos
Edição de Genes , Neisseria meningitidis , Neisseria meningitidis/genética , Edição de Genes/métodos , Teste de Complementação GenéticaRESUMO
Loss of endothelial integrity and vascular leakage are central features of sepsis pathogenesis; however, no effective therapeutic mechanisms for preserving endothelial integrity are available. Here we show that, compared to dermal microvessels, brain microvessels resist infection by Neisseria meningitidis, a bacterial pathogen that causes sepsis and meningitis. By comparing the transcriptional responses to infection in dermal and brain endothelial cells, we identified angiopoietin-like 4 as a key factor produced by the brain endothelium that preserves blood-brain barrier integrity during bacterial sepsis. Conversely, angiopoietin-like 4 is produced at lower levels in the peripheral endothelium. Treatment with recombinant angiopoietin-like 4 reduced vascular leakage, organ failure and death in mouse models of lethal sepsis and N. meningitidis infection. Protection was conferred by a previously uncharacterized domain of angiopoietin-like 4, through binding to the heparan proteoglycan, syndecan-4. These findings reveal a potential strategy to prevent endothelial dysfunction and improve outcomes in patients with sepsis.
Assuntos
Modelos Animais de Doenças , Células Endoteliais , Sepse , Animais , Sepse/microbiologia , Camundongos , Humanos , Células Endoteliais/metabolismo , Células Endoteliais/microbiologia , Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , Proteína 4 Semelhante a Angiopoietina/metabolismo , Proteína 4 Semelhante a Angiopoietina/genética , Barreira Hematoencefálica/metabolismo , Infecções Meningocócicas/microbiologia , Encéfalo/metabolismo , Encéfalo/microbiologia , Encéfalo/patologia , Camundongos Endogâmicos C57BL , Endotélio Vascular/metabolismo , Endotélio Vascular/microbiologiaRESUMO
Bacterial pathogens adapt and replicate within host cells, while host cells develop mechanisms to eliminate them. Using a dual proteomic approach, we characterized the intra-macrophage proteome of the facultative intracellular pathogen, Francisella novicida. More than 900 Francisella proteins were identified in infected macrophages after a 10-h infection. Biotin biosynthesis-related proteins were upregulated, emphasizing the role of biotin-associated genes in Francisella replication. Conversely, proteins encoded by the Francisella pathogenicity island (FPI) were downregulated, supporting the importance of the F. tularensis Type VI Secretion System for vacuole escape, not cytosolic replication. In the host cell, over 300 proteins showed differential expression among the 6200 identified during infection. The most upregulated host protein was cis-aconitate decarboxylase IRG1, known for itaconate production with antimicrobial properties in Francisella. Surprisingly, disrupting IRG1 expression did not impact Francisella's intracellular life cycle, suggesting redundancy with other immune proteins or inclusion in larger complexes. Over-representation analysis highlighted cell-cell contact and actin polymerization in macrophage deregulated proteins. Using flow cytometry and live cell imaging, we demonstrated that merocytophagy involves diverse cell-to-cell contacts and actin polymerization-dependent processes. These findings lay the groundwork for further exploration of merocytophagy and its molecular mechanisms in future research.Data are available via ProteomeXchange with identifier PXD035145.
Assuntos
Francisella tularensis , Tularemia , Animais , Francisella tularensis/genética , Actinas/metabolismo , Biotina/metabolismo , Proteômica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Macrófagos/metabolismo , Estágios do Ciclo de Vida , Tularemia/microbiologia , Ilhas GenômicasRESUMO
Preterm birth is currently the leading cause of neonatal morbidity and mortality. Genetic, immunological and infectious causes are suspected. Preterm infants have a higher risk of severe bacterial neonatal infections, most of which are caused by Escherichia coli an in particular E. coli K1strains. Women with history of preterm delivery have a high risk of recurrence and therefore constitute a target population for the development of vaccine against E. coli neonatal infections. Here, we characterize the immunological, microbiological and protective properties of a live attenuated vaccine candidate in adult female mice and their pups against after a challenge by K1 and non-K1 strains of E. coli. Our results show that the E. coli K1 E11 ∆aroA vaccine induces strong immunity, driven by polyclonal bactericidal antibodies. In our model of meningitis, mothers immunized prior to mating transfer maternal antibodies to pups, which protect newborn mice against various K1 and non-K1 strains of E. coli. Given the very high mortality rate and the neurological sequalae associated with neonatal E. coli K1 meningitis, our results constitute preclinical proof of concept for the development of a live attenuated vaccine against severe E. coli infections in women at risk of preterm delivery.
Assuntos
Infecções por Escherichia coli , Doenças do Recém-Nascido , Meningite , Nascimento Prematuro , Lactente , Adulto , Recém-Nascido , Feminino , Animais , Camundongos , Humanos , Escherichia coli/genética , Vacinas Atenuadas , Nascimento Prematuro/prevenção & controle , Recém-Nascido Prematuro , Infecções por Escherichia coli/prevenção & controle , Doenças do Recém-Nascido/etiologia , Anticorpos , Meningite/etiologiaRESUMO
Staphylococcus aureus is a predominant cause of chronic lung infections. While the airway environment is rich in highly sialylated mucins, the interaction of S. aureus with sialic acid is poorly characterized. Using S. aureus USA300 as well as clinical isolates, we demonstrate that quorum-sensing dysfunction, a hallmark of S. aureus adaptation, correlates with a greater ability to consume free sialic acid, providing a growth advantage in an air-liquid interface model and in vivo. Furthermore, RNA-seq experiment reveals that free sialic acid triggers transcriptional reprogramming promoting S. aureus chronic lifestyle. To support the clinical relevance of our results, we show the co-occurrence of S. aureus, sialidase-producing microbiota and free sialic acid in the airway of patients with cystic fibrosis. Our findings suggest a dual role for sialic acid in S. aureus airway infection, triggering virulence reprogramming and driving S. aureus adaptive strategies through the selection of quorum-sensing dysfunctional strains.
Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Percepção de Quorum/genética , Ácido N-Acetilneuramínico , Sistema Respiratório , Proteínas de BactériasRESUMO
Protein phosphorylation is an integral part of many cellular processes, not only in eukaryotes but also in bacteria. The discovery of both prokaryotic protein kinases and phosphatases has created interest in generating antibacterial therapeutics that target these enzymes. NMA1982 is a putative phosphatase from Neisseria meningitidis, the causative agent of meningitis and meningococcal septicemia. The overall fold of NMA1982 closely resembles that of protein tyrosine phosphatases (PTPs). However, the hallmark C(X)5R PTP signature motif, containing the catalytic cysteine and invariant arginine, is shorter by one amino acid in NMA1982. This has cast doubt about the catalytic mechanism of NMA1982 and its assignment to the PTP superfamily. Here, we demonstrate that NMA1982 indeed employs a catalytic mechanism that is specific to PTPs. Mutagenesis experiments, transition state inhibition, pH-dependence activity, and oxidative inactivation experiments all support that NMA1982 is a genuine PTP. Importantly, we show that NMA1982 is secreted by N. meningitidis, suggesting that this protein is a potential virulence factor. Future studies will need to address whether NMA1982 is indeed essential for N. meningitidis survival and virulence. Based on its unique active site conformation, NMA1982 may become a suitable target for developing selective antibacterial drugs.
Assuntos
Neisseria meningitidis , Fatores de Virulência , Fatores de Virulência/genética , Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , Proteínas Tirosina Fosfatases/química , Domínio Catalítico , AntibacterianosRESUMO
Protein phosphorylation is an integral part of many cellular processes, not only in eukaryotes but also in bacteria. The discovery of both prokaryotic protein kinases and phosphatases has created interest in generating antibacterial therapeutics that target these enzymes. NMA1982 is a putative phosphatase from Neisseria meningitidis, the causative agent of meningitis and meningococcal septicemia. The overall fold of NMA1982 closely resembles that of protein tyrosine phosphatases (PTPs). However, the hallmark C(X)5R PTP signature motif, containing the catalytic cysteine and invariant arginine, is shorter by one amino acid in NMA1982. This has cast doubt about the catalytic mechanism of NMA1982 and its assignment to the PTP superfamily. Here, we demonstrate that NMA1982 indeed employs a catalytic mechanism that is specific to PTPs. Mutagenesis experiments, transition state inhibition, pH-dependence activity, and oxidative inactivation experiments all support that NMA1982 is a genuine PTP. Importantly, we show that NMA1982 is secreted by N. meningitidis, suggesting that this protein is a potential virulence factor. Future studies will need to address whether NMA1982 is indeed essential for N. meningitidis survival and virulence. Based on its unique active site conformation, NMA1982 may become a suitable target for developing selective antibacterial drugs.
RESUMO
Protein phosphorylation is an integral part of many cellular processes, not only in eukaryotes but also in bacteria. The discovery of both prokaryotic protein kinases and phosphatases has created interest in generating antibacterial therapeutics that target these enzymes. NMA1982 is a putative phosphatase from Neisseria meningitidis, the causative agent of meningitis and meningococcal septicemia. The overall fold of NMA1982 closely resembles that of protein tyrosine phosphatases (PTPs). However, the hallmark C(X)5R PTP signature motif, containing the catalytic cysteine and invariant arginine, is shorter by one amino acid in NMA1982. This has cast doubt about the catalytic mechanism of NMA1982 and its assignment to the PTP superfamily. Here, we demonstrate that NMA1982 indeed employs a catalytic mechanism that is specific to PTPs. Mutagenesis experiments, transition state inhibition, pH-dependence activity, and oxidative inactivation experiments all support that NMA1982 is a genuine phosphatase. Importantly, we show that NMA1982 is secreted by N. meningitidis, suggesting that this protein is a potential virulence factor. Future studies will need to address whether NMA1982 is indeed essential for N. meningitidis survival and virulence. Based on its unique active site conformation, NMA1982 may become a suitable target for developing selective antibacterial drugs.
RESUMO
Animal models for studying human pathogens are crucially lacking. We describe the implantation in mice of engineered human mature microvasculature consisting of endothelial and perivascular cells embedded in collagen hydrogel that allows investigation of pathogen interactions with the endothelium, including in vivo functional studies. Using Neisseria meningitidis as a paradigm of human-restricted infection, we demonstrated the strength and opportunities associated with the use of this approach.
RESUMO
Staphylococcus aureus is the predominant pathogen in children with cystic fibrosis (CF) in France and, around 80% of them harbored S. aureus in their lungs. This study investigated virulence and antimicrobial resistance-associated genes and within-host evolution polymorphisms in 14 S. aureus persistent clones from 14 chronically infected CF children. For each of the 14 patients, we compared genomes of two isogenic sequential isolates separated by 2-9 years. All isolates were methicillin-sensitive and harbored the immune evasion gene cluster, whereas half of them harbored the enterotoxin gene cluster. Most clones were capsule type 8 (8/14) and accessory gene regulator (agr)-specificity group 1 (9/14). We identified convergent mutations in genes involved in carbohydrate metabolism, cell wall metabolism, genetic information processing and adhesion, which are likely to play important role in intracellular invasion and persistence. Further explorations relying notably on proteomics will contribute to improve our understanding of the mechanisms at play in the striking long-term persistence ability of S. aureus.
Assuntos
Fibrose Cística , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Criança , Humanos , Staphylococcus aureus/genética , Fibrose Cística/complicações , Pulmão , Proteômica , Antibacterianos , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade MicrobianaRESUMO
More than 12 years have passed since the seminal observation that meningococcus, a pathogen causing epidemic meningitis in humans, occasionally associated with infectious vasculitis and septic shock, can promote the translocation of ß-arrestins to the cell surface beneath bacterial colonies. The cellular receptor used by the pathogen to induce signalling in host cells and allowing it to open endothelial cell junctions and reach meninges was unknown. The involvement of ß-arrestins, which are scaffolding proteins regulating G protein coupled receptor signalling and function, incited us to specifically investigate this class of receptors. In this perspective article we will summarize the events leading to the discovery that the ß2-adrenergic receptor is the receptor that initiates the signalling cascades induced by meningococcus in host cells. This receptor, however, cannot mediate cell infection on its own. It needs to be pre-associated with an "early" adhesion receptor, CD147, within a hetero-oligomeric complex, stabilized by the cytoskeletal protein α-actinin 4. It then required several years to understand how the pathogen actually activates the signalling receptor. Once bound to the N-terminal glycans of the ß2-adrenergic receptor, meningococcus provides a mechanical stimulation that induces the biased activation of ß-arrestin-mediated signalling pathways. This activating mechanical stimulus can be reproduced in the absence of any pathogen by applying equivalent forces on receptor glycans. Mechanical activation of the ß2-adrenergic receptor might have a physiological role in signalling events promoted in the context of cell-to-cell interaction.
Assuntos
Neisseria meningitidis , Arrestinas/metabolismo , Células Endoteliais/metabolismo , Humanos , Neisseria meningitidis/metabolismo , Polissacarídeos , beta-Arrestinas/metabolismoRESUMO
BACKGROUND: Staphylococcus aureus dominates the lung microbiota of children with cystic fibrosis (CF) and persistent clones are able to establish chronic infection for years, having a direct deleterious impact on lung function. However, in this context, the exact contribution of S. aureus to the decline in respiratory function in children with CF is not elucidated. METHODS: To investigate the contribution of persistent S. aureus clones in CF disease, we undertook the analysis of sequential isogenic isolates recovered from 15 young CF patients. RESULTS: Using an air-liquid infection model, we observed a strong correlation between S. aureus adaption in the lung (late isolates), low toxicity, and proinflammatory cytokine secretion. Conversely, early isolates appeared to be highly cytotoxic but did not promote cytokine secretion. We found that cytokine secretion was dependent on staphylococcal protein A (Spa), which was selectively expressed in late compared to early isolates as a consequence of dysfunctional agr quorum-sensing system. Finally, we demonstrated the involvement of TNF-α receptor 1 signaling in the inflammatory response of airway epithelial cells to these lung-adapted S. aureus isolates. CONCLUSIONS: Our results suggest an unexpected direct role of bacterial lung adaptation in the progression of chronic lung disease by promoting a proinflammatory response through acquired agr dysfunction.
Assuntos
Fibrose Cística , Infecções Estafilocócicas , Criança , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Humanos , Pulmão/metabolismo , Infecções Estafilocócicas/microbiologia , Proteína Estafilocócica A , Staphylococcus aureus/fisiologia , Fator de Necrose Tumoral alfaRESUMO
In adult testis, the cell mobility is essential for spermatogonia differentiation and is suspected to regulate spermatogonial stem cell fate. Netrin-1 controls cell migration and/or survival according to the cellular context. Its involvement in some self-renewing lineages raises the possibility that Netrin-1 could have a role in spermatogenesis. We show that in addition to Sertoli cells, a fraction of murine undifferentiated spermatogonia express the Netrin-1 receptor UNC5c and that UNC5c contributes to spermatogonia differentiation. Receptor loss in Unc5crcm males leads to the concomitant accumulation of transit-amplifying progenitors and short syncytia of spermatogonia. Without altering cell death rates, the consequences of Unc5c loss worsen with age: the increase in quiescent undifferentiated progenitors associated with a higher spermatogonial stem cell enriched subset leads to the spermatocyte I decline. We demonstrate in vitro that Netrin-1 promotes a guidance effect as it repulses both undifferentiated and differentiating spermatogonia. Finally, we propose that UNC5c triggers undifferentiated spermatogonia adhesion/ migration and that the repulsive activity of Netrin-1 receptors could regulate spermatogonia differentiation, and maintain germ cell homeostasis.
Assuntos
Espermatogênese , Espermatogônias , Animais , Diferenciação Celular/fisiologia , Homeostase , Masculino , Camundongos , Receptores de Netrina/metabolismo , Netrina-1/metabolismo , Espermatogênese/fisiologia , TestículoRESUMO
Neisseria meningitidis utilizes type IV pili (T4P) to adhere to and colonize host endothelial cells, a process at the heart of meningococcal invasive diseases leading to meningitis and sepsis. T4P are polymers of an antigenically variable major pilin building block, PilE, plus several core minor pilins that initiate pilus assembly and are thought to be located at the pilus tip. Adhesion of N. meningitidis to human endothelial cells requires both PilE and a conserved noncore minor pilin PilV, but the localization of PilV and its precise role in this process remains to be clarified. Here, we show that both PilE and PilV promote adhesion to endothelial vessels in vivo. The substantial adhesion defect observed for pilV mutants suggests it is the main adhesin. Consistent with this observation, superresolution microscopy showed the abundant distribution of PilV throughout the pilus. We determined the crystal structure of PilV and modeled it within the pilus filament. The small size of PilV causes it to be recessed relative to adjacent PilE subunits, which are dominated by a prominent hypervariable loop. Nonetheless, we identified a conserved surface-exposed adhesive loop on PilV by alanine scanning mutagenesis. Critically, antibodies directed against PilV inhibit N. meningitidis colonization of human skin grafts. These findings explain how N. meningitidis T4P undergo antigenic variation to evade the humoral immune response while maintaining their adhesive function and establish the potential of this highly conserved minor pilin as a vaccine and therapeutic target for the prevention and treatment of N. meningitidis infections.
Assuntos
Aderência Bacteriana , Proteínas de Bactérias/fisiologia , Fímbrias Bacterianas/fisiologia , Neisseria meningitidis/fisiologia , Animais , Anticorpos/uso terapêutico , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Feminino , Fímbrias Bacterianas/química , Fímbrias Bacterianas/ultraestrutura , Humanos , Infecções Meningocócicas/tratamento farmacológico , Camundongos SCIDRESUMO
Metabolic pathways are now considered as intrinsic virulence attributes of pathogenic bacteria and thus represent potential targets for antibacterial strategies. Here we focused on the role of the pentose phosphate pathway (PPP) and its connections with other metabolic pathways in the pathophysiology of Francisella novicida. The involvement of the PPP in the intracellular life cycle of Francisella was first demonstrated by studying PPP inactivating mutants. Indeed, we observed that inactivation of the tktA, rpiA or rpe genes severely impaired intramacrophage multiplication during the first 24 hours. However, time-lapse video microscopy demonstrated that rpiA and rpe mutants were able to resume late intracellular multiplication. To better understand the links between PPP and other metabolic networks in the bacterium, we also performed an extensive proteo-metabolomic analysis of these mutants. We show that the PPP constitutes a major bacterial metabolic hub with multiple connections to glycolysis, the tricarboxylic acid cycle and other pathways, such as fatty acid degradation and sulfur metabolism. Altogether our study highlights how PPP plays a key role in the pathogenesis and growth of Francisella in its intracellular niche.
Assuntos
Proteínas de Bactérias/metabolismo , Drosophila melanogaster/metabolismo , Francisella/patogenicidade , Infecções por Bactérias Gram-Negativas/microbiologia , Metaboloma , Via de Pentose Fosfato , Proteoma , Animais , Proteínas de Bactérias/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/microbiologia , Francisella/metabolismo , Regulação Bacteriana da Expressão Gênica , Glicólise , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MutaçãoRESUMO
Antibiotic-resistant Staphylococcus aureus strains constitute a major public health concern worldwide and are responsible for both health care- and community-associated infections. Here, we establish a robust and easy-to-implement model of oral S. aureus infection using Drosophila melanogaster larvae that allowed us to follow the fate of S. aureus at the whole-organism level as well as the host immune responses. Our study demonstrates that S. aureus infection triggers H2O2 production by the host via the Duox enzyme, thereby promoting antimicrobial peptide production through activation of the Toll pathway. Staphylococcal catalase mediates H2O2 neutralization, which not only promotes S. aureus survival but also minimizes the host antimicrobial response, hence reducing bacterial clearance in vivo. We show that while catalase expression is regulated in vitro by the accessory gene regulatory system (Agr) and the general stress response regulator sigma B (SigB), it no longer depends on these two master regulators in vivo. Finally, we confirm the versatility of this model by demonstrating the colonization and host stimulation capabilities of S. aureus strains belonging to different sequence types (CC8 and CC5) as well as of two other bacterial pathogens, Salmonella enterica serovar Typhimurium and Shigella flexneri. Thus, the Drosophila larva can be a general model to follow in vivo the innate host immune responses triggered during infection by human pathogens. IMPORTANCE The pathogenicity of methicillin-resistant S. aureus (MRSA) strains relies on their ability to produce a wide variety of tightly regulated virulence factors. Current in vivo models to analyze host-pathogen interactions are limited and difficult to manipulate. Here, we have established a robust and reliable model of oral S. aureus infection using Drosophila melanogaster larvae. We show that S. aureus stimulates host immunity through the production of reactive oxygen species (ROS) and antimicrobial peptide (AMP) and that ROS potentialize AMP gene expression. S. aureus catalase plays a key role in this complex environment and acts in vivo independently from SigB and Agr control. We propose that fly larvae can provide a general model for studying the colonization capabilities of human pathogens.
Assuntos
Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Staphylococcus aureus Resistente à Meticilina/imunologia , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Espécies Reativas de Oxigênio/imunologia , Animais , Modelos Animais de Doenças , Drosophila melanogaster/imunologia , Drosophila melanogaster/microbiologia , Regulação Bacteriana da Expressão Gênica , Larva/imunologia , Larva/microbiologia , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/imunologia , Espécies Reativas de Oxigênio/metabolismo , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , VirulênciaRESUMO
Neisseria meningitidis (the meningococcus) remains a major cause of bacterial meningitis and fatal sepsis. This commensal bacterium of the human nasopharynx can cause invasive diseases when it leaves its niche and reaches the bloodstream. Blood-borne meningococci have the ability to adhere to human endothelial cells and rapidly colonize microvessels. This crucial step enables dissemination into tissues and promotes deregulated inflammation and coagulation, leading to extensive necrotic purpura in the most severe cases. Adhesion to blood vessels relies on type IV pili (TFP). These long filamentous structures are highly dynamic as they can rapidly elongate and retract by the antagonistic action of two ATPases, PilF and PilT. However, the consequences of TFP dynamics on the pathophysiology and the outcome of meningococcal sepsis in vivo have been poorly studied. Here, we show that human graft microvessels are replicative niches for meningococci, that seed the bloodstream and promote sustained bacteremia and lethality in a humanized mouse model. Intriguingly, although pilus-retraction deficient N. meningitidis strain (ΔpilT) efficiently colonizes human graft tissue, this mutant did not promote sustained bacteremia nor induce mouse lethality. This effect was not due to a decreased inflammatory response, nor defects in bacterial clearance by the innate immune system. Rather, TFP-retraction was necessary to promote the release of TFP-dependent contacts between bacteria and, in turn, the detachment from colonized microvessels. The resulting sustained bacteremia was directly correlated with lethality. Altogether, these results demonstrate that pilus retraction plays a key role in the occurrence and outcome of meningococcal sepsis by supporting sustained bacteremia. These findings open new perspectives on the role of circulating bacteria in the pathological alterations leading to lethal sepsis.
Assuntos
Bacteriemia/microbiologia , Modelos Animais de Doenças , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/fisiologia , Infecções Meningocócicas/microbiologia , Neisseria meningitidis/patogenicidade , Sepse/microbiologia , Animais , Bacteriemia/metabolismo , Bacteriemia/patologia , Aderência Bacteriana , Células Endoteliais , Feminino , Proteínas de Fímbrias/genética , Humanos , Infecções Meningocócicas/metabolismo , Infecções Meningocócicas/patologia , Camundongos , Camundongos SCID , Sepse/metabolismo , Sepse/patologia , Transplante de PeleRESUMO
Staphylococcus epidermidis is a pathogen emerging worldwide as a leading cause of health care-associated infections. A standardized high-resolution typing method to document transmission and dissemination of multidrug-resistant S. epidermidis strains is needed. Our aim was to provide a core genome multilocus sequence typing (cgMLST) scheme for S. epidermidis to improve the international surveillance of S. epidermidis We defined a cgMLST scheme based on 699 core genes and used it to investigate the population structure of the species and the genetic relatedness of isolates recovered from infants hospitalized in several wards of a French hospital. Our results show the long-lasting endemic persistence of S. epidermidis clones within and across wards of hospitals and demonstrate the ability of our cgMLST approach to identify and track these clones. We made the scheme publicly available through the Institut Pasteur BIGSdb server (http://bigsdb.pasteur.fr/epidermidis/). This tool should enable international harmonization of the epidemiological surveillance of multidrug-resistant S. epidermidis clones. By comparing gene distribution among infection and commensal isolates, we also confirmed the association of the mecA locus with infection isolates and of the fdh gene with commensal isolates. (This study has been registered at ClinicalTrials.gov under registration no. NCT03374371.).
Assuntos
Infecções Estafilocócicas , Staphylococcus epidermidis , Células Clonais , Genoma Bacteriano/genética , Hospitais , Humanos , Tipagem de Sequências Multilocus , Infecções Estafilocócicas/epidemiologia , Staphylococcus epidermidis/genéticaRESUMO
Bacterial acute pneumonia is responsible for an extremely large burden of death worldwide and diagnosis is paramount in the management of patients. While multidrug-resistant bacteria is one of the biggest health threats in the coming decades, clinicians urgently need access to novel diagnostic technologies. In this review, we will first present the already existing and largely used techniques that allow identifying pathogen-associated pneumonia. Then, we will discuss the latest and most promising technological advances that are based on connected technologies (artificial intelligence-based and Omics-based) or rapid tests, to improve the management of lung infections caused by pathogenic bacteria. We also aim to highlight the mutual benefits of fundamental and clinical studies for a better understanding of lung infections and their more efficient diagnostic management.
RESUMO
Cells are sensitive to chemical stimulation which is converted into intracellular biochemical signals by the activation of specific receptors. Mechanical stimulations can also induce biochemical responses via the activation of various mechano-sensors. Although principally appreciated for their chemosensory function, G-protein-coupled receptors (GPCRs) may participate in mechano-transduction. They are indirectly activated by the paracrine release of chemical compounds secreted in response to mechanical stimuli, but they might additionally behave as mechano-sensors that are directly stimulated by mechanical forces. Although several studies are consistent with this latter hypothesis, the molecular mechanisms of a potential direct mechanical activation of GPCRs have remained elusive until recently. In particular, investigating the activation of the catecholamine ß2-adrenergic receptor by a pathogen revealed that traction forces directly exerted on the N-terminus of the receptor via N-glycan chains activate specific signaling pathways. These findings open new perspectives in GPCR biology and pharmacology since most GPCRs express N-glycan chains in their N-terminus, which might similarly be involved in the interaction with cell-surface glycan-specific lectins in the context of cell-to-cell mechanical signaling.