Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(4)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37106777

RESUMO

Climate change is leading to the loss of oxygen content in the oceans and endangering the survival of many marine species. Due to sea surface temperature warming and changing circulation, the ocean has become more stratified and is consequently losing its oxygen content. Oviparous elasmobranchs are particularly vulnerable as they lay their eggs in coastal and shallow areas, where they experience significant oscillations in oxygen levels. Here, we investigated the effects of deoxygenation (93% air saturation) and hypoxia (26% air saturation) during a short-term period (six days) on the anti-predator avoidance behavior and physiology (oxidative stress) of small-spotted catshark (Scyliorhinus canicula) embryos. Their survival rate decreased to 88% and 56% under deoxygenation and hypoxia, respectively. The tail beat rates were significantly enhanced in the embryos under hypoxia compared to those exposed to deoxygenation and control conditions, and the freeze response duration showed a significant opposite trend. Yet, at the physiological level, through the analyses of key biomarkers (SOD, CAT, GPx, and GST activities as well as HSP70, Ubiquitin, and MDA levels), we found no evidence of increased oxidative stress and cell damage under hypoxia. Thus, the present findings show that the projected end-of-the-century deoxygenation levels elicit neglectable biological effects on shark embryos. On the other hand, hypoxia causes a high embryo mortality rate. Additionally, hypoxia makes embryos more vulnerable to predators, because the increased tail beat frequency will enhance the release of chemical and physical cues that can be detected by predators. The shortening of the shark freeze response under hypoxia also makes the embryos more prone to predation.

2.
Toxins (Basel) ; 15(2)2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36828471

RESUMO

Marine heatwaves (MHWs) have doubled in frequency since the 1980s and are projected to be exacerbated during this century. MHWs have been shown to trigger harmful algal blooms (HABs), with severe consequences to marine life and human populations. Within this context, this study aims to understand, for the first time, how MHWs impact key biological and toxicological parameters of the paralytic shellfish toxin (PST) producer Gymnodinium catenatum, a dinoflagellate inhabiting temperate and tropical coastal waters. Two MHW were simulated-category I (i.e., peak: 19.9 °C) and category IV (i.e., peak: 24.1 °C)-relative to the estimated baseline in the western coast of Portugal (18.5 °C). No significant changes in abundance, size, and photosynthetic efficiency were observed among treatments. On the other hand, chain-formation was significantly reduced under category IV MHW, as was PSP toxicity and production of some PST compounds. Overall, this suggests that G. catenatum may have a high tolerance to MHWs. Nevertheless, some sublethal effects may have occurred since chain-formation was affected, suggesting that these growth conditions may be sub-optimal for this population. Our study suggests that the increase in frequency, intensity, and duration of MHWs may lead to reduced severity of G. catenatum blooms.


Assuntos
Dinoflagellida , Temperatura Alta , Humanos , Saxitoxina/toxicidade , Toxinas Marinhas , Frutos do Mar
3.
Biology (Basel) ; 11(10)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36290300

RESUMO

Ocean warming and acidification have been shown to elicit deleterious effects on cephalopod mollusks, especially during early ontogeny, albeit effects on behavior remain largely unexplored. This study aimed to evaluate, for the first time, the effect of end-of-the-century projected levels of ocean warming (W; + 3 °C) and acidification (A; 980 µatm pCO2) on Sepia officinalis hatchlings' exploratory behavior and ability to camouflage in different substrate complexities (sand and black and white gravel). Cuttlefish were recorded in open field tests, from which mobility and exploratory avoidance behavior data were obtained. Latency to camouflage was registered remotely, and pixel intensity of body planes and background gravel were extracted from photographs. Hatching success was lowered under A and W combined (AW; 72.7%) compared to control conditions (C; 98.8%). Motion-related behaviors were not affected by the treatments. AW delayed camouflage response in the gravel substrate compared to W alone. Moreover, cuttlefish exhibited a higher contrast and consequently a stronger disruptive pattern under W, with no changes in background matching. These findings suggest that, although climate change may elicit relevant physiological challenges to cuttlefish, camouflage and mobility of these mollusks are not undermined under the ocean of tomorrow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA