Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Commun ; 14(1): 3459, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311751

RESUMO

Two tumor (Classical/Basal) and stroma (Inactive/active) subtypes of Pancreatic adenocarcinoma (PDAC) with prognostic and theragnostic implications have been described. These molecular subtypes were defined by RNAseq, a costly technique sensitive to sample quality and cellularity, not used in routine practice. To allow rapid PDAC molecular subtyping and study PDAC heterogeneity, we develop PACpAInt, a multi-step deep learning model. PACpAInt is trained on a multicentric cohort (n = 202) and validated on 4 independent cohorts including biopsies (surgical cohorts n = 148; 97; 126 / biopsy cohort n = 25), all with transcriptomic data (n = 598) to predict tumor tissue, tumor cells from stroma, and their transcriptomic molecular subtypes, either at the whole slide or tile level (112 µm squares). PACpAInt correctly predicts tumor subtypes at the whole slide level on surgical and biopsies specimens and independently predicts survival. PACpAInt highlights the presence of a minor aggressive Basal contingent that negatively impacts survival in 39% of RNA-defined classical cases. Tile-level analysis ( > 6 millions) redefines PDAC microheterogeneity showing codependencies in the distribution of tumor and stroma subtypes, and demonstrates that, in addition to the Classical and Basal tumors, there are Hybrid tumors that combine the latter subtypes, and Intermediate tumors that may represent a transition state during PDAC evolution.


Assuntos
Adenocarcinoma , Aprendizado Profundo , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/genética , Neoplasias Pancreáticas/genética , Agressão , Neoplasias Pancreáticas
2.
Hepatology ; 73(5): 2078-2079, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32894800
3.
Nat Commun ; 11(1): 3877, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32747659

RESUMO

Deep learning methods for digital pathology analysis are an effective way to address multiple clinical questions, from diagnosis to prediction of treatment outcomes. These methods have also been used to predict gene mutations from pathology images, but no comprehensive evaluation of their potential for extracting molecular features from histology slides has yet been performed. We show that HE2RNA, a model based on the integration of multiple data modes, can be trained to systematically predict RNA-Seq profiles from whole-slide images alone, without expert annotation. Through its interpretable design, HE2RNA provides virtual spatialization of gene expression, as validated by CD3- and CD20-staining on an independent dataset. The transcriptomic representation learned by HE2RNA can also be transferred on other datasets, even of small size, to increase prediction performance for specific molecular phenotypes. We illustrate the use of this approach in clinical diagnosis purposes such as the identification of tumors with microsatellite instability.


Assuntos
Biologia Computacional/métodos , Aprendizado Profundo , Regulação Neoplásica da Expressão Gênica , Processamento de Imagem Assistida por Computador/métodos , Neoplasias/genética , RNA-Seq/métodos , Algoritmos , Perfilação da Expressão Gênica/métodos , Humanos , Instabilidade de Microssatélites , Modelos Genéticos , Neoplasias/diagnóstico , Neoplasias/metabolismo
4.
J Thorac Oncol ; 15(6): 1037-1053, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32165206

RESUMO

INTRODUCTION: Histologic subtypes of malignant pleural mesothelioma are a major prognostic indicator and decision denominator for all therapeutic strategies. In an ambiguous case, a rare transitional mesothelioma (TM) pattern may be diagnosed by pathologists either as epithelioid mesothelioma (EM), biphasic mesothelioma (BM), or sarcomatoid mesothelioma (SM). This study aimed to better characterize the TM subtype from a histological, immunohistochemical, and molecular standpoint. Deep learning of pathologic slides was applied to this cohort. METHODS: A random selection of 49 representative digitalized sections from surgical biopsies of TM was reviewed by 16 panelists. We evaluated BAP1 expression and CDKN2A (p16) homozygous deletion. We conducted a comprehensive, integrated, transcriptomic analysis. An unsupervised deep learning algorithm was trained to classify tumors. RESULTS: The 16 panelists recorded 784 diagnoses on the 49 cases. Even though a Kappa value of 0.42 is moderate, the presence of a TM component was diagnosed in 51%. In 49% of the histological evaluation, the reviewers classified the lesion as EM in 53%, SM in 33%, or BM in 14%. Median survival was 6.7 months. Loss of BAP1 observed in 44% was less frequent in TM than in EM and BM. p16 homozygous deletion was higher in TM (73%), followed by BM (63%) and SM (46%). RNA sequencing unsupervised clustering analysis revealed that TM grouped together and were closer to SM than to EM. Deep learning analysis achieved 94% accuracy for TM identification. CONCLUSION: These results revealed that the TM pattern should be classified as non-EM or at minimum as a subgroup of the SM type.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares , Mesotelioma , Homozigoto , Humanos , Neoplasias Pulmonares/genética , Mesotelioma/genética , Deleção de Sequência , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética
5.
Hepatology ; 72(6): 2000-2013, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32108950

RESUMO

BACKGROUND AND AIMS: Standardized and robust risk-stratification systems for patients with hepatocellular carcinoma (HCC) are required to improve therapeutic strategies and investigate the benefits of adjuvant systemic therapies after curative resection/ablation. APPROACH AND RESULTS: In this study, we used two deep-learning algorithms based on whole-slide digitized histological slides (whole-slide imaging; WSI) to build models for predicting survival of patients with HCC treated by surgical resection. Two independent series were investigated: a discovery set (Henri Mondor Hospital, n = 194) used to develop our algorithms and an independent validation set (The Cancer Genome Atlas [TCGA], n = 328). WSIs were first divided into small squares ("tiles"), and features were extracted with a pretrained convolutional neural network (preprocessing step). The first deep-learning-based algorithm ("SCHMOWDER") uses an attention mechanism on tumoral areas annotated by a pathologist whereas the second ("CHOWDER") does not require human expertise. In the discovery set, c-indices for survival prediction of SCHMOWDER and CHOWDER reached 0.78 and 0.75, respectively. Both models outperformed a composite score incorporating all baseline variables associated with survival. Prognostic value of the models was further validated in the TCGA data set, and, as observed in the discovery series, both models had a higher discriminatory power than a score combining all baseline variables associated with survival. Pathological review showed that the tumoral areas most predictive of poor survival were characterized by vascular spaces, the macrotrabecular architectural pattern, and a lack of immune infiltration. CONCLUSIONS: This study shows that artificial intelligence can help refine the prediction of HCC prognosis. It highlights the importance of pathologist/machine interactions for the construction of deep-learning algorithms that benefit from expert knowledge and allow a biological understanding of their output.


Assuntos
Carcinoma Hepatocelular/mortalidade , Aprendizado Profundo , Hepatectomia/métodos , Neoplasias Hepáticas/mortalidade , Idoso , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/cirurgia , Estudos de Viabilidade , Feminino , Seguimentos , Humanos , Fígado/patologia , Fígado/cirurgia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/cirurgia , Masculino , Pessoa de Meia-Idade , Prognóstico , Medição de Risco/métodos , Análise de Sobrevida , Resultado do Tratamento
6.
J Thorac Oncol ; 15(1): 29-49, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31546041

RESUMO

INTRODUCTION: Molecular and immunologic breakthroughs are transforming the management of thoracic cancer, although advances have not been as marked for malignant pleural mesothelioma where pathologic diagnosis has been essentially limited to three histologic subtypes. METHODS: A multidisciplinary group (pathologists, molecular biologists, surgeons, radiologists, and oncologists), sponsored by European Network for Rare Adult Solid Cancers/International Association for the Study of Lung Cancer, met in 2018 to critically review the current classification. RESULTS: Recommendations include: (1) classification should be updated to include architectural patterns and stromal and cytologic features that refine prognostication; (2) subject to data accrual, malignant mesothelioma in situ could be an additional category; (3) grading of epithelioid malignant pleural mesotheliomas should be routinely undertaken; (4) favorable/unfavorable histologic characteristics should be routinely reported; (5) clinically relevant molecular data (programmed death ligand 1, BRCA 1 associated protein 1 [BAP1], and cyclin dependent kinase inhibitor 2A) should be incorporated into reports, if undertaken; (6) other molecular data should be accrued as part of future trials; (7) resection specimens (i.e., extended pleurectomy/decortication and extrapleural pneumonectomy) should be pathologically staged with smaller specimens being clinically staged; (8) ideally, at least three separate areas should be sampled from the pleural cavity, including areas of interest identified on pre-surgical imaging; (9) image-acquisition protocols/imaging terminology should be standardized to aid research/refine clinical staging; (10) multidisciplinary tumor boards should include pathologists to ensure appropriate treatment options are considered; (11) all histologic subtypes should be considered potential candidates for chemotherapy; (12) patients with sarcomatoid or biphasic mesothelioma should not be excluded from first-line clinical trials unless there is a compelling reason; (13) tumor subtyping should be further assessed in relation to duration of response to immunotherapy; and (14) systematic screening of all patients for germline mutations is not recommended, in the absence of a family history suspicious for BAP1 syndrome. CONCLUSIONS: These multidisciplinary recommendations for pathology classification and application will allow more informative pathologic reporting and potential risk stratification, to support clinical practice, research investigation and clinical trials.


Assuntos
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Adulto , Humanos , Neoplasias Pulmonares/genética , Mesotelioma/cirurgia , Neoplasias Pleurais/cirurgia , Pneumonectomia , Proteínas Supressoras de Tumor , Ubiquitina Tiolesterase
7.
Nat Med ; 25(10): 1519-1525, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31591589

RESUMO

Malignant mesothelioma (MM) is an aggressive cancer primarily diagnosed on the basis of histological criteria1. The 2015 World Health Organization classification subdivides mesothelioma tumors into three histological types: epithelioid, biphasic and sarcomatoid MM. MM is a highly complex and heterogeneous disease, rendering its diagnosis and histological typing difficult and leading to suboptimal patient care and decisions regarding treatment modalities2. Here we have developed a new approach-based on deep convolutional neural networks-called MesoNet to accurately predict the overall survival of mesothelioma patients from whole-slide digitized images, without any pathologist-provided locally annotated regions. We validated MesoNet on both an internal validation cohort from the French MESOBANK and an independent cohort from The Cancer Genome Atlas (TCGA). We also demonstrated that the model was more accurate in predicting patient survival than using current pathology practices. Furthermore, unlike classical black-box deep learning methods, MesoNet identified regions contributing to patient outcome prediction. Strikingly, we found that these regions are mainly located in the stroma and are histological features associated with inflammation, cellular diversity and vacuolization. These findings suggest that deep learning models can identify new features predictive of patient survival and potentially lead to new biomarker discoveries.


Assuntos
Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patologia , Mesotelioma/diagnóstico , Mesotelioma/patologia , Prognóstico , Aprendizado Profundo , Feminino , Humanos , Neoplasias Pulmonares/classificação , Masculino , Mesotelioma/classificação , Mesotelioma Maligno , Gradação de Tumores , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA