Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Stem Cell Res Ther ; 15(1): 130, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702837

RESUMO

BACKGROUND: Hyaluronan (HA) is an extracellular glycosaminoglycan polysaccharide with widespread roles throughout development and in healthy and neoplastic tissues. In pluripotent stem cell culture it can support both stem cell renewal and differentiation. However, responses to HA in culture are influenced by interaction with a range of cognate factors and receptors including components of blood serum supplements, which alter results. These may contribute to variation in cell batch production yield and phenotype as well as heighten the risks of adventitious pathogen transmission in the course of cell processing for therapeutic applications. MAIN: Here we characterise differentiation of a human embryo/pluripotent stem cell derived Mesenchymal Stromal Cell (hESC/PSC-MSC)-like cell population by culture on a planar surface coated with HA in serum-free media qualified for cell production for therapy. Resulting cells met minimum criteria of the International Society for Cellular Therapy for identification as MSC by expression of. CD90, CD73, CD105, and lack of expression for CD34, CD45, CD14 and HLA-II. They were positive for other MSC associated markers (i.e.CD166, CD56, CD44, HLA 1-A) whilst negative for others (e.g. CD271, CD71, CD146). In vitro co-culture assessment of MSC associated functionality confirmed support of growth of hematopoietic progenitors and inhibition of mitogen activated proliferation of lymphocytes from umbilical cord and adult peripheral blood mononuclear cells, respectively. Co-culture with immortalized THP-1 monocyte derived macrophages (Mɸ) concurrently stimulated with lipopolysaccharide as a pro-inflammatory stimulus, resulted in a dose dependent increase in pro-inflammatory IL6 but negligible effect on TNFα. To further investigate these functionalities, a bulk cell RNA sequence comparison with adult human bone marrow derived MSC and hESC substantiated a distinctive genetic signature more proximate to the former. CONCLUSION: Cultivation of human pluripotent stem cells on a planar substrate of HA in serum-free culture media systems is sufficient to yield a distinctive developmental mesenchymal stromal cell lineage with potential to modify the function of haematopoietic lineages in therapeutic applications.


Assuntos
Diferenciação Celular , Ácido Hialurônico , Células-Tronco Mesenquimais , Células-Tronco Pluripotentes , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Ácido Hialurônico/farmacologia , Ácido Hialurônico/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Meios de Cultura Livres de Soro/farmacologia , Linhagem da Célula , Células Cultivadas , Técnicas de Cultura de Células/métodos , Técnicas de Cocultura
2.
Stem Cell Reports ; 16(8): 1853-1867, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34380020

RESUMO

Disease-relevant human induced pluripotent stem cells (iPSCs) are generated worldwide for research purposes; however, without robust and practical ethical, legal, and quality standards, there is a high risk that their true potential will not be realized. Best practices for tissue procurement, iPSC reprogramming, day-to-day cultivation, quality control, and data management aligned with an ethical and legal framework must be included into daily operations to ensure their promise is maximized. Here we discuss key learning experiences from 7 years of operating the European Bank for induced Pluripotent Stem Cells (EBiSC) and recommend how to incorporate solutions into a daily management framework.


Assuntos
Bancos de Espécimes Biológicos/estatística & dados numéricos , Reprogramação Celular/genética , Criopreservação/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Bancos de Espécimes Biológicos/ética , Bancos de Espécimes Biológicos/normas , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/normas , Diferenciação Celular/genética , Linhagem Celular , Europa (Continente) , Humanos , Controle de Qualidade
3.
Biofabrication ; 7(4): 044102, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26486521

RESUMO

We report the first investigation into the bioprinting of human induced pluripotent stem cells (hiPSCs), their response to a valve-based printing process as well as their post-printing differentiation into hepatocyte-like cells (HLCs). HLCs differentiated from both hiPSCs and human embryonic stem cells (hESCs) sources were bioprinted and examined for the presence of hepatic markers to further validate the compatibility of the valve-based bioprinting process with fragile cell transfer. Examined cells were positive for nuclear factor 4 alpha and were demonstrated to secrete albumin and have morphology that was also found to be similar to that of hepatocytes. Both hESC and hiPSC lines were tested for post-printing viability and pluripotency and were found to have negligible difference in terms of viability and pluripotency between the printed and non-printed cells. hESC-derived HLCs were 3D printed using alginate hydrogel matrix and tested for viability and albumin secretion during the remaining differentiation and were found to be hepatic in nature. 3D printed with 40-layer of HLC-containing alginate structures reached peak albumin secretion at day 21 of the differentiation protocol. This work demonstrates that the valve-based printing process is gentle enough to print human pluripotent stem cells (hPSCs) (both hESCs and hiPSCs) while either maintaining their pluripotency or directing their differentiation into specific lineages. The ability to bioprint hPSCs will pave the way for producing organs or tissues on demand from patient specific cells which could be used for animal-free drug development and personalized medicine.


Assuntos
Bioimpressão/métodos , Diferenciação Celular , Hepatócitos/citologia , Fígado/citologia , Células-Tronco Pluripotentes/citologia , Impressão Tridimensional , Biomarcadores/metabolismo , Bioimpressão/instrumentação , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Hepatócitos/efeitos dos fármacos , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Microscopia de Fluorescência , Pressão , Reprodutibilidade dos Testes , Esterilização
4.
Biofabrication ; 5(1): 015013, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23380571

RESUMO

In recent years, the use of a simple inkjet technology for cell printing has triggered tremendous interest and established the field of biofabrication. A key challenge has been the development of printing processes which are both controllable and less harmful, in order to preserve cell and tissue viability and functions. Here, we report on the development of a valve-based cell printer that has been validated to print highly viable cells in programmable patterns from two different bio-inks with independent control of the volume of each droplet (with a lower limit of 2 nL or fewer than five cells per droplet). Human ESCs were used to make spheroids by overprinting two opposing gradients of bio-ink; one of hESCs in medium and the other of medium alone. The resulting array of uniform sized droplets with a gradient of cell concentrations was inverted to allow cells to aggregate and form spheroids via gravity. The resulting aggregates have controllable and repeatable sizes, and consequently they can be made to order for specific applications. Spheroids with between 5 and 140 dissociated cells resulted in spheroids of 0.25-0.6 mm diameter. This work demonstrates that the valve-based printing process is gentle enough to maintain stem cell viability, accurate enough to produce spheroids of uniform size, and that printed cells maintain their pluripotency. This study includes the first analysis of the response of human embryonic stem cells to the printing process using this valve-based printing setup.


Assuntos
Bioimpressão/métodos , Células-Tronco Embrionárias/citologia , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química , Proliferação de Células , Sobrevivência Celular , Células-Tronco Embrionárias/química , Humanos , Tamanho da Partícula
6.
Regen Med ; 6(6 Suppl): 150-2, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21999279
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA