Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 25(12): 3255-3268, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37813828

RESUMO

The guanine/cytosine (GC) content of prokaryotic genomes is species-specific, taking values from 16% to 77%. This diversity of selection for GC content remains contentious. We analyse the correlations between GC content and a range of phenotypic and genotypic data in thousands of prokaryotes. GC content integrates well with these traits into r/K selection theory when phenotypic plasticity is considered. High GC-content prokaryotes are r-strategists with cheaper descendants thanks to a lower average amino acid metabolic cost, colonize unstable environments thanks to flagella and a bacillus form and are generalists in terms of resource opportunism and their defence mechanisms. Low GC content prokaryotes are K-strategists specialized for stable environments that maintain homeostasis via a high-cost outer cell membrane and endospore formation as a response to nutrient deprivation, and attain a higher nutrient-to-biomass yield. The lower proteome cost of high GC content prokaryotes is driven by the association between GC-rich codons and cheaper amino acids in the genetic code, while the correlation between GC content and genome size may be partly due to functional diversity driven by r/K selection. In all, molecular diversity in the GC content of prokaryotes may be a consequence of ecological r/K selection.


Assuntos
Aminoácidos , Células Procarióticas , Composição de Bases , Aminoácidos/análise , Códon , Proteoma/genética
2.
Environ Microbiol ; 25(12): 3052-3063, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37658654

RESUMO

Microbes are often discussed in terms of dichotomies such as copiotrophic/oligotrophic and fast/slow-growing microbes, defined using the characterisation of microbial growth in isolated cultures. The dichotomies are usually qualitative and/or study-specific, sometimes precluding clear-cut results interpretation. We can unravel microbial dichotomies as life history strategies by combining ecology theory with Monod curves, a laboratory mathematical tool of bacterial physiology that relates the specific growth rate of a microbe with the concentration of a limiting nutrient. Fitting of Monod curves provides quantities that directly correspond to key parameters in ecological theories addressing species coexistence and diversity, such as r/K selection theory, resource competition and community structure theory and the CSR triangle of life strategies. The resulting model allows us to reconcile the copiotrophic/oligotrophic and fast/slow-growing dichotomies as different subsamples of a life history strategy triangle that also includes r/K strategists. We also used the number of known carbon sources together with community structure theory to partially explain the diversity of heterotrophic microbes observed in metagenomics experiments. In sum, we propose a theoretical framework for the study of natural microbial communities that unifies several existing proposals. Its application would require the integration of metagenomics, metametabolomics, Monod curves and carbon source data.


Assuntos
Bactérias , Microbiota , Bactérias/genética , Processos Heterotróficos , Metagenômica , Carbono
3.
Environ Microbiol ; 25(7): 1232-1237, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36856667

RESUMO

Nearly 100 years ago, Winogradsky published a classic communication in which he described two groups of microbes, zymogenic and autochthonous. When organic matter penetrates the soil, zymogenic microbes quickly multiply and degrade it, then giving way to the slow combustion of autochthonous microbes. Although the text was originally written in French, it is often cited by English-speaking authors. We undertook a complete translation of the 1924 publication, which we provide as Supporting information. Here, we introduce the translation and describe how the zymogenic/autochthonous dichotomy shaped research questions in the study of microbial diversity and physiology. We also identify in the literature three additional and closely related dichotomies, which we propose to call exclusive copiotrophs/oligotrophs, coexisting copiotrophs/oligotrophs and fast-growing/slow-growing microbes. While Winogradsky focussed on a successional view of microbial populations over time, the current discussion is focussed on the differences in the specific growth rate of microbes as a function of the concentration of a given limiting substrate. In the future, it will be relevant to keep in mind both nutrient-focussed and time-focussed microbial dichotomies and to design experiments with both isolated laboratory cultures and multi-species communities in the spirit of Winogradsky's direct method.


Assuntos
Bactérias , Microbiologia do Solo , Biodiversidade , Bactérias/classificação , Bactérias/citologia , Bactérias/metabolismo , Solo/química , Ecossistema
4.
Front Plant Sci ; 12: 787549, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35281698

RESUMO

Paspalum dilatatum (common name dallisgrass), a productive C4 grass native to South America, is an important pasture grass found throughout the temperate warm regions of the world. It is characterized by its tolerance to frost and water stress and a higher forage quality than other C4 forage grasses. P. dilatatum includes tetraploid (2n = 40), sexual, and pentaploid (2n = 50) apomictic forms, but is predominantly cultivated in an apomictic monoculture, which implies a high risk that biotic and abiotic stresses could seriously affect the grass productivity. The obtention of reproducible and efficient protocols of regeneration and transformation are valuable tools to obtain genetic modified grasses with improved agronomics traits. In this review, we present the current regeneration and transformation methods of both apomictic and sexual cultivars of P. dilatatum, discuss their strengths and limitations, and focus on the perspectives of genetic modification for producing new generation of forages. The advances in this area of research lead us to consider Paspalum dilatatum as a model species for the molecular improvement of C4 perennial forage species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA