Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 22(8): e3002773, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39208027

RESUMO

While extinction risk categorization is fundamental for building robust conservation planning for marine fishes, empirical data on occurrence and vulnerability to disturbances are still lacking for most marine teleost fish species, preventing the assessment of their International Union for the Conservation of Nature (IUCN) status. In this article, we predicted the IUCN status of marine fishes based on two machine learning algorithms, trained with available species occurrences, biological traits, taxonomy, and human uses. We found that extinction risk for marine fish species is higher than initially estimated by the IUCN, increasing from 2.5% to 12.7%. Species predicted as Threatened were mainly characterized by a small geographic range, a relatively large body size, and a low growth rate. Hotspots of predicted Threatened species peaked mainly in the South China Sea, the Philippine Sea, the Celebes Sea, the west coast Australia and North America. We also explored the consequences of including these predicted species' IUCN status in the prioritization of marine protected areas through conservation planning. We found a marked increase in prioritization ranks for subpolar and polar regions despite their low species richness. We suggest to integrate multifactorial ensemble learning to assess species extinction risk and offer a more complete view of endangered taxonomic groups to ultimately reach global conservation targets like the extending coverage of protected areas where species are the most vulnerable.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Extinção Biológica , Peixes , Animais , Conservação dos Recursos Naturais/métodos , Biodiversidade , Organismos Aquáticos , Aprendizado de Máquina , Oceanos e Mares , Medição de Risco
2.
Insects ; 14(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36835692

RESUMO

Phenotypic plasticity can favor the emergence of different morphotypes specialized in specific ranges of environmental conditions. The existence of intraspecific partitioning confers resilience at the species scale and can ultimately determine species survival in a context of global changes. Amblystogenium pacificum is a carabid beetle endemic to the sub-Antarctic Crozet Islands, and it has two distinctive morphotypes based on body coloration. For this study, A. pacificum specimens of functional niches were sampled along an altitudinal gradient (as a proxy for temperature), and some morphological and biochemical traits were measured. We used an FAMD multivariate analysis and linear mixed-effects models to test whether these traits were related to morphotype, altitude, and sexual dimorphism. We then calculated and compared the functional niches at different altitudes and tested for niche partitioning through a hypervolume approach. We found a positive hump-shaped correlation between altitude and body size as well as higher protein and sugar reserves in females than in males. Our functional hypervolume results suggest that the main driver of niche partitioning along the altitudinal gradient is body size rather than morphotype or sex, even though darker morphotypes tended to be more functionally constrained at higher altitudes and females showed limited trait variations at the highest altitude.

3.
Ecology ; 102(2): e03239, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33125718

RESUMO

In ecological networks, neutral predictions suggest that species' interaction frequencies are proportional to their relative abundances. Deviations from neutral predictions thus correspond to interaction preferences (when positive) or avoidances (when negative), driven by nonneutral (e.g., niche-based) processes. Exotic species interact with many partners with which they have not coevolved, and it remains unclear whether this systematically influences the strength of neutral processes on interactions, and how these interaction-level differences scale up to entire networks. To fill this gap, we compared interactions between plants and frugivorous birds at nine forest sites in New Zealand varying in the relative abundance and composition of native and exotic species, with independently sampled data on bird and plant abundances from the same sites. We tested if the strength and direction of interaction preferences differed between native and exotic species. We further evaluated whether the performance of neutral predictions at the site level was predicted by the proportion of exotic interactions in each network from both bird and plant perspectives, and the species composition in each site. We found that interactions involving native plants deviated more strongly from neutral predictions than did interactions involving exotics. This "pickiness" of native plants could be detrimental in a context of global biotic homogenization where they could be increasingly exposed to novel interactions with neutrally interacting mutualists. However, the realization of only a subset of interactions in different sites compensated for the neutrality of interactions involving exotics, so that neutral predictions for whole networks did not change systematically with the proportion of exotic species or species composition. Therefore, the neutral and niche processes that underpin individual interactions may not scale up to entire networks. This shows that seemingly simplistic neutral assumptions entail complex processes and can provide valuable understanding of community assembly or invasion dynamics.


Assuntos
Aves , Plantas , Animais , Ecossistema , Florestas , Nova Zelândia , Simbiose
4.
Ecol Lett ; 19(7): 762-70, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27169359

RESUMO

Species roles in ecological networks combine to generate their architecture, which contributes to their stability. Species trait diversity also affects ecosystem functioning and resilience, yet it remains unknown whether species' contributions to functional diversity relate to their network roles. Here, we use 21 empirical pollen transport networks to characterise this relationship. We found that, apart from a few abundant species, pollinators with original traits either had few interaction partners or interacted most frequently with a subset of these partners. This suggests that narrowing of interactions to a subset of the plant community accompanies pollinator niche specialisation, congruent with our hypothesised trade-off between having unique traits vs. being able to interact with many mutualist partners. Conversely, these effects were not detected in plants, potentially because key aspects of their flowering traits are conserved at a family level. Relating functional and network roles can provide further insight into mechanisms underlying ecosystem functioning.


Assuntos
Ecossistema , Insetos , Plantas , Polinização , Animais , Ecologia/métodos , Modelos Biológicos , Nova Zelândia , Pólen/fisiologia , Simbiose
5.
Trends Plant Sci ; 19(5): 281-3, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24685831

RESUMO

Network studies have described the complex interactions among species. Concomitantly, researchers have searched for signals of ecosystem tipping points and attributes of systems that resist them. A recent study combines these areas, showing that attributes of pollination network structure delay critical transitions, and generating a wealth of new research questions.


Assuntos
Ecossistema , Plantas/genética , Polinização/fisiologia , Biologia de Sistemas , Animais , Insetos , Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Dinâmica Populacional , Reprodução , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA