Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(17): e2320239121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38630721

RESUMO

Collective motion is ubiquitous in nature; groups of animals, such as fish, birds, and ungulates appear to move as a whole, exhibiting a rich behavioral repertoire that ranges from directed movement to milling to disordered swarming. Typically, such macroscopic patterns arise from decentralized, local interactions among constituent components (e.g., individual fish in a school). Preeminent models of this process describe individuals as self-propelled particles, subject to self-generated motion and "social forces" such as short-range repulsion and long-range attraction or alignment. However, organisms are not particles; they are probabilistic decision-makers. Here, we introduce an approach to modeling collective behavior based on active inference. This cognitive framework casts behavior as the consequence of a single imperative: to minimize surprise. We demonstrate that many empirically observed collective phenomena, including cohesion, milling, and directed motion, emerge naturally when considering behavior as driven by active Bayesian inference-without explicitly building behavioral rules or goals into individual agents. Furthermore, we show that active inference can recover and generalize the classical notion of social forces as agents attempt to suppress prediction errors that conflict with their expectations. By exploring the parameter space of the belief-based model, we reveal nontrivial relationships between the individual beliefs and group properties like polarization and the tendency to visit different collective states. We also explore how individual beliefs about uncertainty determine collective decision-making accuracy. Finally, we show how agents can update their generative model over time, resulting in groups that are collectively more sensitive to external fluctuations and encode information more robustly.


Assuntos
Comportamento de Massa , Modelos Biológicos , Animais , Teorema de Bayes , Movimento , Movimento (Física) , Peixes , Comportamento Social , Comportamento Animal
2.
PNAS Nexus ; 3(3): pgae073, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38487161

RESUMO

Understanding how animals swim efficiently and generate high thrust in complex fluid environments is of considerable interest to researchers in various fields, including biology, physics, and engineering. However, the influence of often-overlooked perturbations on swimming fish remains largely unexplored. Here, we investigate the propulsion generated by oscillating tailbeats with superimposed rhythmic perturbations of high frequency and low amplitude. We reveal, using a combination of experiments in a biomimetic fish-like robotic platform, computational fluid dynamics simulations, and theoretical analysis, that rhythmic perturbations can significantly increase both swimming efficiency and thrust production. The introduction of perturbations increases pressure-induced thrust, while reduced phase lag between body motion and the subsequent fluid dynamics response improves swimming efficiency. Moreover, our findings suggest that beneficial perturbations are sensitive to kinematic parameters, resolving previous conflicts regarding the effects of such perturbations. Our results highlight the potential benefits of introducing perturbations in propulsion generators, providing potential hypotheses for living systems and inspiring the design of artificial flapping-based propulsion systems.

3.
Phys Biol ; 21(2)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38266294

RESUMO

A fundamental question in complex systems is how to relate interactions between individual components ('microscopic description') to the global properties of the system ('macroscopic description'). Furthermore, it is unclear whether such a macroscopic description exists and if such a description can capture large-scale properties. Here, we address the validity of a macroscopic description of a complex biological system using the collective motion of desert locusts as a canonical example. One of the world's most devastating insect plagues begins when flightless juvenile locusts form 'marching bands'. These bands display remarkable coordinated motion, moving through semiarid habitats in search of food. We investigated how well macroscopic physical models can describe the flow of locusts within a band. For this, we filmed locusts within marching bands during an outbreak in Kenya and automatically tracked all individuals passing through the camera frame. We first analyzed the spatial topology of nearest neighbors and found individuals to be isotropically distributed. Despite this apparent randomness, a local order was observed in regions of high density in the radial distribution function, akin to an ordered fluid. Furthermore, reconstructing individual locust trajectories revealed a highly aligned movement, consistent with the one-dimensional version of the Toner-Tu equations, a generalization of the Navier-Stokes equations for fluids, used to describe the equivalent macroscopic fluid properties of active particles. Using this effective Toner-Tu equation, which relates the gradient of the pressure to the acceleration, we show that the effective 'pressure' of locusts increases as a linear function of density in segments with the highest polarization (for which the one-dimensional approximation is most appropriate). Our study thus demonstrates an effective hydrodynamic description of flow dynamics in plague locust swarms.


Assuntos
Gafanhotos , Modelos Biológicos , Animais , Humanos , Hidrodinâmica , Movimento , Movimento (Física)
4.
Elife ; 122023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38019274

RESUMO

Groups of animals inhabit vastly different sensory worlds, or umwelten, which shape fundamental aspects of their behaviour. Yet the sensory ecology of species is rarely incorporated into the emerging field of collective behaviour, which studies the movements, population-level behaviours, and emergent properties of animal groups. Here, we review the contributions of sensory ecology and collective behaviour to understanding how animals move and interact within the context of their social and physical environments. Our goal is to advance and bridge these two areas of inquiry and highlight the potential for their creative integration. To achieve this goal, we organise our review around the following themes: (1) identifying the promise of integrating collective behaviour and sensory ecology; (2) defining and exploring the concept of a 'sensory collective'; (3) considering the potential for sensory collectives to shape the evolution of sensory systems; (4) exploring examples from diverse taxa to illustrate neural circuits involved in sensing and collective behaviour; and (5) suggesting the need for creative conceptual and methodological advances to quantify 'sensescapes'. In the final section, (6) applications to biological conservation, we argue that these topics are timely, given the ongoing anthropogenic changes to sensory stimuli (e.g. via light, sound, and chemical pollution) which are anticipated to impact animal collectives and group-level behaviour and, in turn, ecosystem composition and function. Our synthesis seeks to provide a forward-looking perspective on how sensory ecologists and collective behaviourists can both learn from and inspire one another to advance our understanding of animal behaviour, ecology, adaptation, and evolution.


Assuntos
Ecologia , Ecossistema , Animais , Comportamento Animal , Meio Ambiente , Movimento
5.
J R Soc Interface ; 20(207): 20230290, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37848056

RESUMO

A honey bee colony functions as an integrated collective, with individuals coordinating their behaviour to adapt and respond to unexpected disturbances. Nest homeostasis is critical for colony function; when ambient temperatures increase, individuals switch to thermoregulatory roles to cool the nest, such as fanning and water collection. While prior work has focused on bees engaged in specific behaviours, less is known about how responses are coordinated at the colony level, and how previous tasks predict behavioural changes during a heat stress. Using BeesBook automated tracking, we follow thousands of individuals during an experimentally induced heat stress, and analyse their behavioural changes from the individual to colony level. We show that heat stress causes an overall increase in activity levels and a spatial reorganization of bees away from the brood area. Using a generalized framework to analyse individual behaviour, we find that individuals differ in their response to heat stress, which depends on their prior behaviour and correlates with age. Examining the correlation of behavioural metrics over time suggests that heat stress perturbation does not have a long-lasting effect on an individual's future behaviour. These results demonstrate how thousands of individuals within a colony change their behaviour to achieve a coordinated response to an environmental disturbance.


Assuntos
Regulação da Temperatura Corporal , Comportamento Social , Humanos , Abelhas , Animais , Comportamento de Nidação/fisiologia , Resposta ao Choque Térmico
6.
Sci Adv ; 9(35): eadf8068, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37656798

RESUMO

The SMART-BARN (scalable multimodal arena for real-time tracking behavior of animals in large numbers) achieves fast, robust acquisition of movement, behavior, communication, and interactions of animals in groups, within a large (14.7 meters by 6.6 meters by 3.8 meters), three-dimensional environment using multiple information channels. Behavior is measured from a wide range of taxa (insects, birds, mammals, etc.) and body size (from moths to humans) simultaneously. This system integrates multiple, concurrent measurement techniques including submillimeter precision and high-speed (300 hertz) motion capture, acoustic recording and localization, automated behavioral recognition (computer vision), and remote computer-controlled interactive units (e.g., automated feeders and animal-borne devices). The data streams are available in real time allowing highly controlled and behavior-dependent closed-loop experiments, while producing comprehensive datasets for offline analysis. The diverse capabilities of SMART-BARN are demonstrated through three challenging avian case studies, while highlighting its broad applicability to the fine-scale analysis of collective animal behavior across species.


Assuntos
Comportamento Animal , Movimento , Humanos , Animais , Mamíferos
7.
Science ; 380(6644): 454-455, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37141343

RESUMO

An anticannibalistic signaling pathway offers a new understanding of locust swarm formation.


Assuntos
Canibalismo , Gafanhotos , Transdução de Sinais , Animais , Ecologia , Gafanhotos/metabolismo , Gafanhotos/fisiologia
8.
Phys Biol ; 20(4)2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37141898

RESUMO

While moving, animals must frequently make decisions about their future travel direction, whether they are alone or in a group. Here we investigate this process for zebrafish (Danio rerio), which naturally move in cohesive groups. Employing state-of-the-art virtual reality, we study how real fish (RF) follow one or several moving, virtual conspecifics (leaders). These data are used to inform, and test, a model of social response that includes a process of explicit decision-making, whereby the fish can decide which of the virtual conspecifics to follow, or to follow in some average direction. This approach is in contrast with previous models where the direction of motion was based on a continuous computation, such as directional averaging. Building upon a simplified version of this model (Sridharet al2021Proc. Natl Acad. Sci.118e2102157118), which was limited to a one-dimensional projection of the fish motion, we present here a model that describes the motion of the RF as it swims freely in two-dimensions. Motivated by experimental observations, the swim speed of the fish in this model uses a burst-and-coast swimming pattern, with the burst frequency being dependent on the distance of the fish from the followed conspecific(s). We demonstrate that this model is able to explain the observed spatial distribution of the RF behind the virtual conspecifics in the experiments, as a function of their average speed and number. In particular, the model naturally explains the observed critical bifurcations for a freely swimming fish, which appear in the spatial distributions whenever the fish makes a decision to follow only one of the virtual conspecifics, instead of following them as an averaged group. This model can provide the foundation for modeling a cohesive shoal of swimming fish, while explicitly describing their directional decision-making process at the individual level.


Assuntos
Comportamento Social , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Comportamento Animal/fisiologia , Movimento , Natação , Cognição
9.
Proc Natl Acad Sci U S A ; 120(11): e2206163120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36897970

RESUMO

How collectives remain coordinated as they grow in size is a fundamental challenge affecting systems ranging from biofilms to governments. This challenge is particularly apparent in multicellular organisms, where coordination among a vast number of cells is vital for coherent animal behavior. However, the earliest multicellular organisms were decentralized, with indeterminate sizes and morphologies, as exemplified by Trichoplax adhaerens, arguably the earliest-diverged and simplest motile animal. We investigated coordination among cells in T. adhaerens by observing the degree of collective order in locomotion across animals of differing sizes and found that larger individuals exhibit increasingly disordered locomotion. We reproduced this effect of size on order through a simulation model of active elastic cellular sheets and demonstrate that this relationship is best recapitulated across all body sizes when the simulation parameters are tuned to a critical point in the parameter space. We quantify the trade-off between increasing size and coordination in a multicellular animal with a decentralized anatomy that shows evidence of criticality and hypothesize as to the implications of this on the evolution hierarchical structures such as nervous systems in larger organisms.


Assuntos
Placozoa , Animais , Placozoa/fisiologia , Tamanho Corporal , Sistema Nervoso Central , Evolução Biológica
10.
Elife ; 122023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947111

RESUMO

When a fish beats its tail, it produces vortices in the water that other fish could take advantage of to save energy while swimming.


Assuntos
Peixes , Natação , Animais , Fenômenos Biomecânicos , Fenômenos Físicos , Água
11.
J Anim Ecol ; 92(7): 1357-1371, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945122

RESUMO

Methods for collecting animal behaviour data in natural environments, such as direct observation and biologging, are typically limited in spatiotemporal resolution, the number of animals that can be observed and information about animals' social and physical environments. Video imagery can capture rich information about animals and their environments, but image-based approaches are often impractical due to the challenges of processing large and complex multi-image datasets and transforming resulting data, such as animals' locations, into geographical coordinates. We demonstrate a new system for studying behaviour in the wild that uses drone-recorded videos and computer vision approaches to automatically track the location and body posture of free-roaming animals in georeferenced coordinates with high spatiotemporal resolution embedded in contemporaneous 3D landscape models of the surrounding area. We provide two worked examples in which we apply this approach to videos of gelada monkeys and multiple species of group-living African ungulates. We demonstrate how to track multiple animals simultaneously, classify individuals by species and age-sex class, estimate individuals' body postures (poses) and extract environmental features, including topography of the landscape and animal trails. By quantifying animal movement and posture while reconstructing a detailed 3D model of the landscape, our approach opens the door to studying the sensory ecology and decision-making of animals within their natural physical and social environments.


Assuntos
Movimento , Dispositivos Aéreos não Tripulados , Animais , Postura , Ecologia/métodos , Computadores
12.
Philos Trans R Soc Lond B Biol Sci ; 378(1874): 20220062, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36802787

RESUMO

Many animal behaviours exhibit complex temporal dynamics, suggesting there are multiple timescales at which they should be studied. However, researchers often focus on behaviours that occur over relatively restricted temporal scales, typically ones that are more accessible to human observation. The situation becomes even more complex when considering multiple animals interacting, where behavioural coupling can introduce new timescales of importance. Here, we present a technique to study the time-varying nature of social influence in mobile animal groups across multiple temporal scales. As case studies, we analyse golden shiner fish and homing pigeons, which move in different media. By analysing pairwise interactions among individuals, we show that predictive power of the factors affecting social influence depends on the timescale of analysis. Over short timescales the relative position of a neighbour best predicts its influence and the distribution of influence across group members is relatively linear, with a small slope. At longer timescales, however, both relative position and kinematics are found to predict influence, and nonlinearity in the influence distribution increases, with a small number of individuals being disproportionately influential. Our results demonstrate that different interpretations of social influence arise from analysing behaviour at different timescales, highlighting the importance of considering its multiscale nature. This article is part of a discussion meeting issue 'Collective behaviour through time'.


Assuntos
Comportamento Animal , Comportamento Social , Animais , Humanos , Columbidae
13.
Trends Ecol Evol ; 38(4): 346-354, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36509561

RESUMO

The first response exhibited by animals to changing environments is typically behavioral. Behavior is thus central to predicting, and mitigating, the impacts that natural and anthropogenic environmental changes will have on populations and, consequently, ecosystems. Yet the inherently multiscale nature of behavior, as well as the complexities associated with inferring how animals perceive their world, and make decisions, has constrained the scope of behavioral research. Major technological advances in electronics and in machine learning, however, provide increasingly powerful means to see, analyze, and interpret behavior in its natural complexity. We argue that these disruptive technologies will foster new approaches that will allow us to move beyond quantitative descriptions and reveal the underlying generative processes that give rise to behavior.


Assuntos
Pesquisa Comportamental , Ecossistema , Animais
14.
Sci Rep ; 12(1): 19113, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352049

RESUMO

Using a motion-capture system and custom head-calibration methods, we reconstructed the head-centric view of freely behaving pigeons and examined how they orient their head when presented with various types of attention-getting objects at various relative locations. Pigeons predominantly employed their retinal specializations to view a visual target, namely their foveas projecting laterally (at an azimuth of ± 75°) into the horizon, and their visually-sensitive "red areas" projecting broadly into the lower-frontal visual field. Pigeons used their foveas to view any distant object while they used their red areas to view a nearby object on the ground (< 50 cm). Pigeons "fixated" a visual target with their foveas; the intervals between head-saccades were longer when the visual target was viewed by birds' foveas compared to when it was viewed by any other region. Furthermore, pigeons showed a weak preference to use their right eye to examine small objects distinctive in detailed features and their left eye to view threat-related or social stimuli. Despite the known difficulty in identifying where a bird is attending, we show that it is possible to estimate the visual attention of freely-behaving birds by tracking the projections of their retinal specializations in their visual field with cutting-edge methods.


Assuntos
Percepção de Movimento , Campos Visuais , Animais , Columbidae , Movimentos Sacádicos , Retina
15.
iScience ; 25(9): 104842, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36039297

RESUMO

In honey bee colonies, workers generally change tasks with age (from brood care, to nest work, to foraging). While these trends are well established, our understanding of how individuals distribute tasks during a day, and how individuals differ in their lifetime behavioral trajectories, is limited. Here, we use automated tracking to obtain long-term data on 4,100+ bees tracked continuously at 3 Hz, across an entire summer, and use behavioral metrics to compare behavior at different timescales. Considering single days, we describe how bees differ in space use, detection, and movement. Analyzing the behavior exhibited across their entire lives, we find consistent inter-individual differences in the movement characteristics of individuals. Bees also differ in how quickly they transition through behavioral space to ultimately become foragers, with fast-transitioning bees living the shortest lives. Our analysis framework provides a quantitative approach to describe individual behavioral variation within a colony from single days to entire lifetimes.

16.
Elife ; 112022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35852826

RESUMO

Predation is one of the main evolutionary drivers of social grouping. While it is well appreciated that predation risk is likely not shared equally among individuals within groups, its detailed quantification has remained difficult due to the speed of attacks and the highly dynamic nature of collective prey response. Here, using high-resolution tracking of solitary predators (Northern pike) hunting schooling fish (golden shiners), we not only provide insights into predator decision-making, but show which key spatial and kinematic features of predator and prey predict the risk of individuals to be targeted and to survive attacks. We found that pike tended to stealthily approach the largest groups, and were often already inside the school when launching their attack, making prey in this frontal 'strike zone' the most vulnerable to be targeted. From the prey's perspective, those fish in central locations, but relatively far from, and less aligned with, neighbours, were most likely to be targeted. While the majority of attacks were successful (70%), targeted individuals that did manage to avoid being captured exhibited a higher maximum acceleration response just before the attack and were further away from the pike's head. Our results highlight the crucial interplay between predators' attack strategy and response of prey underlying the predation risk within mobile animal groups.


Assuntos
Peixes , Comportamento Predatório , Animais , Peixes/fisiologia , Comportamento Predatório/fisiologia
17.
Sci Adv ; 8(25): eabm6385, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35731883

RESUMO

Theoretical physics predicts optimal information processing in living systems near transitions (or pseudo-critical points) in their collective dynamics. However, focusing on potential benefits of proximity to a critical point, such as maximal sensitivity to perturbations and fast dissemination of information, commonly disregards possible costs of criticality in the noisy, dynamic environmental contexts of biological systems. Here, we find that startle cascades in fish schools are subcritical (not maximally responsive to environmental cues) and that distance to criticality decreases when perceived risk increases. Considering individuals' costs related to two detection error types, associated to both true and false alarms, we argue that being subcritical, and modulating distance to criticality, can be understood as managing a trade-off between sensitivity and robustness according to the riskiness and noisiness of the environment. Our work emphasizes the need for an individual-based and context-dependent perspective on criticality and collective information processing and motivates future questions about the evolutionary forces that brought about a particular trade-off.

18.
Nat Commun ; 13(1): 792, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140206

RESUMO

Inexpensive and accessible sensors are accelerating data acquisition in animal ecology. These technologies hold great potential for large-scale ecological understanding, but are limited by current processing approaches which inefficiently distill data into relevant information. We argue that animal ecologists can capitalize on large datasets generated by modern sensors by combining machine learning approaches with domain knowledge. Incorporating machine learning into ecological workflows could improve inputs for ecological models and lead to integrated hybrid modeling tools. This approach will require close interdisciplinary collaboration to ensure the quality of novel approaches and train a new generation of data scientists in ecology and conservation.


Assuntos
Animais Selvagens , Conservação dos Recursos Naturais , Ecologia , Aprendizado de Máquina , Animais , Automação , Ecossistema , Conhecimento , Modelos Teóricos
19.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34880130

RESUMO

Choosing among spatially distributed options is a central challenge for animals, from deciding among alternative potential food sources or refuges to choosing with whom to associate. Using an integrated theoretical and experimental approach (employing immersive virtual reality), we consider the interplay between movement and vectorial integration during decision-making regarding two, or more, options in space. In computational models of this process, we reveal the occurrence of spontaneous and abrupt "critical" transitions (associated with specific geometrical relationships) whereby organisms spontaneously switch from averaging vectorial information among, to suddenly excluding one among, the remaining options. This bifurcation process repeats until only one option-the one ultimately selected-remains. Thus, we predict that the brain repeatedly breaks multichoice decisions into a series of binary decisions in space-time. Experiments with fruit flies, desert locusts, and larval zebrafish reveal that they exhibit these same bifurcations, demonstrating that across taxa and ecological contexts, there exist fundamental geometric principles that are essential to explain how, and why, animals move the way they do.


Assuntos
Comportamento Animal , Tomada de Decisões , Modelos Teóricos , Comportamento Social , Animais , Drosophila melanogaster , Gafanhotos , Larva , Atividade Motora , Peixe-Zebra
20.
J R Soc Interface ; 18(180): 20210142, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34229461

RESUMO

We investigate key principles underlying individual, and collective, visual detection of stimuli, and how this relates to the internal structure of groups. While the individual and collective detection principles are generally applicable, we employ a model experimental system of schooling golden shiner fish (Notemigonus crysoleucas) to relate theory directly to empirical data, using computational reconstruction of the visual fields of all individuals. This reveals how the external visual information available to each group member depends on the number of individuals in the group, the position within the group, and the location of the external visually detectable stimulus. We find that in small groups, individuals have detection capability in nearly all directions, while in large groups, occlusion by neighbours causes detection capability to vary with position within the group. To understand the principles that drive detection in groups, we formulate a simple, and generally applicable, model that captures how visual detection properties emerge due to geometric scaling of the space occupied by the group and occlusion caused by neighbours. We employ these insights to discuss principles that extend beyond our specific system, such as how collective detection depends on individual body shape, and the size and structure of the group.


Assuntos
Comportamento Animal , Cyprinidae , Animais , Humanos , Modelos Biológicos , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA