Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
NPJ Vaccines ; 9(1): 145, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127725

RESUMO

Since 2021, the emergence of variants of concern (VOC) has led Brazil to experience record numbers of in COVID-19 cases and deaths. The expanded spread of the SARS-CoV-2 combined with a low vaccination rate has contributed to the emergence of new mutations that may enhance viral fitness, leading to the persistence of the disease. Due to limitations in the real-time genomic monitoring of new variants in some Brazilian states, we aimed to investigate whether genomic surveillance, coupled with epidemiological data and SARS-CoV-2 variants spatiotemporal spread in a smaller region, can reflect the pandemic progression at a national level. Our findings revealed three SARS-CoV-2 variant replacements from 2021 to early 2022, corresponding to the introduction and increase in the frequency of Gamma, Delta, and Omicron variants, as indicated by peaks of the Effective Reproductive Number (Reff). These distinct clade replacements triggered two waves of COVID-19 cases, influenced by the increasing vaccine uptake over time. Our results indicated that the effectiveness of vaccination in preventing new cases during the Delta and Omicron circulations was six and eleven times higher, respectively, than during the period when Gamma was predominant, and it was highly efficient in reducing the number of deaths. Furthermore, we demonstrated that genomic monitoring at a local level can reflect the national trends in the spread and evolution of SARS-CoV-2.

2.
Cytotherapy ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970613

RESUMO

Chimeric antigen receptor (CAR) engineering of natural killer (NK) cells has shown promising results in early-phase clinical studies. However, advancing CAR-NK cell therapeutic efficacy is imperative. In this study, we investigated the impact of a fourth-generation CD19-targeted CAR (CAR.19) coexpressing IL-27 on NK-92 cells. We observed a significant improvement in NK-92 cell proliferation and cytotoxicity activity against B-cell cancer cell lines, both in vitro and in a xenograft mouse B-cell lymphoma model. Our systematic transcriptome analysis of the activated NK-92 CAR variants further supports the potential of IL-27 in fourth-generation CARs to overcome limitations of NK cell-based targeted tumor therapies by providing essential growth and activation signals. Integrating IL-27 into CAR-NK cells emerges as a promising strategy to enhance their therapeutic potential and elicit robust responses against cancer cells. These findings contribute substantially to the mounting evidence supporting the potential of fourth-generation CAR engineering in advancing NK cell-based immunotherapies.

3.
Cell Reprogram ; 26(3): 107-115, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38917437

RESUMO

Our group generated two induced pluripotent stem cell (iPSC) lines for in vitro red blood cell (RBC) production from blood donors with extensively known erythrocyte antigen profiles. One line was intended to give rise to RBCs for transfusions in patients with sickle cell disease (SCD), while the other was developed to create RBC panel reagents. Two blood donors were selected based on their RBC phenotypes, further complemented by high-throughput DNA array analysis to obtain a more comprehensive erythrocyte antigen profile. Enriched erythroblast populations from the donors' peripheral blood mononuclear cells were reprogrammed into iPSCs using nonintegrative plasmid vectors. The iPSC lines were characterized and subsequently subjected to hematopoietic differentiation. iPSC PB02 and iPSC PB12 demonstrated in vitro and in vivo iPSC features and retained the genotype of each blood donor's RBC antigen profile. Colony-forming cell assays confirmed that iPSC PB02 and iPSC PB12 generated hematopoietic progenitors. These two iPSC lines were generated with defined erythrocyte antigen profiles, self-renewal capacity, and hematopoietic differentiation potential. With improvements in hematopoietic differentiation, these cells could potentially be more efficiently differentiated into RBCs in the future. They could serve as a complementary approach for obtaining donor-independent RBCs and addressing specific demands for blood transfusions.


Assuntos
Doadores de Sangue , Diferenciação Celular , Eritrócitos , Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Humanos , Eritrócitos/metabolismo , Eritrócitos/citologia , Linhagem Celular , Animais , Antígenos de Grupos Sanguíneos , Camundongos , Anemia Falciforme/terapia , Anemia Falciforme/sangue
4.
Res Sq ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38746160

RESUMO

Background: Dengue virus (DENV) and Chikungunya virus (CHIKV) pose significant public health threats in Brazil, where favorable conditions facilitated the proliferation of Aedes mosquitoes. Since the mid-1980s, Brazil has experienced annual outbreaks of DENV, with recent increases in confirmed cases. In addition, CHIKV, which was first reported in 2014, has spread across the country. The concurrent presence of these viruses has triggered public health alerts in endemic regions, underscoring the complexity of managing vector-borne diseases. Case Presentation: This report details a case of simultaneous DENV and CHIKV infections. A 77-year-old female patient who has diabetes and arrhythmia exhibited symptoms including fever, myalgia, and severe arthralgia. Laboratory tests confirmed the coinfection through RNA detection. The patient received supportive care, showed gradual improvement, and was eventually discharged. Conclusions: Coinfection with DENV and CHIKV cases reported here developed with mild outcomes. However, one of the patients did not recover from the arthralgia after presenting diagnostic challenges, which underscores the need for accurate differentiation to manage symptoms effectively. The reported cases, amidst increasing DENV outbreaks, highlight the urgency for preparedness in the healthcare system. The Ribeirão Preto region's endemicity for DENV, coupled with the rising incidence of CHIKV, emphasizes the evolving landscape of arbovirus transmission. Studies on Aedes mosquitoes suggest potential implications for human infection dynamics, warranting further investigation into arbovirus transmission efficacy and coinfection dynamics.

6.
J Infect Public Health ; 17(7): 102442, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38820892

RESUMO

We aimed to describe the landscape, including molecular, epidemiological, and clinical aspects of CHIKV infections in the Ribeirao Preto region, an area endemic to dengue. We randomly screened 3744 plasma samples that had undergone DENV diagnosis to evaluate CHIKV-RNA using an in-house RT-PCR assay. Positive samples were followed clinically, and RNA samples were submitted to whole genome sequencing. Seventeen cases (0.5 %) were positive for CHIKV-RNA despite being negative for DENV-RNA. Notably, half of the patients experienced prolonged arthralgia lasting more than 90 days. Compared with the healthy control group, leukopenia and thrombocytopenia were observed in all CHIKV-positive individuals with statistically significant P values (P < 0.0001 and P = 0.0003, respectively). The genomic analysis revealed that the CHIKV strains being studied are classified within the East-Central-South-African (ECSA) genotype. This analysis identified new mutations, E1: K211E and E2: V264A, while the previously known mutation E1: A226V was not detected among these strains. This study highlights the need for epidemiological surveillance and preparedness for potential CHIKV epidemics in Brazil, particularly where other arboviruses co-circulate.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Dengue , Genótipo , RNA Viral , Humanos , Brasil/epidemiologia , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/sangue , Febre de Chikungunya/virologia , Vírus Chikungunya/genética , Vírus Chikungunya/isolamento & purificação , Dengue/epidemiologia , Dengue/virologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , RNA Viral/genética , Adulto Jovem , Doenças Endêmicas , Adolescente , Sequenciamento Completo do Genoma , Idoso , Criança , Filogenia , Mutação , Pré-Escolar , Vírus da Dengue/genética , Vírus da Dengue/isolamento & purificação , Vírus da Dengue/classificação , Trombocitopenia/epidemiologia , Trombocitopenia/virologia
7.
Hematol Oncol Stem Cell Ther ; 17(2): 120-129, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38560971

RESUMO

BACKGROUND AND OBJECTIVES: Bone marrow mesenchymal stromal cells (BM-MSCs) are key elements of the hematopoietic niche and participate in the regulatory mechanisms of hematopoietic stem cells (HSCs). Hematological diseases can affect MSCs and their functions. However, the dysregulations caused by sickle cell disease (SCD) are not fully elucidated. This work explored changes in BM-MSCs and their relationship with age using sickle cell mice (Townes-SS). MATERIALS AND METHODS: BM-MSCs were isolated from Townes-SS, and control groups 30- and 60-day-old Townes-AA and C57BL/6 J. RESULTS: The BM-MSCs showed no morphological differences in culture and demonstrated a murine MSC-like immunophenotypic profile (Sca-1+, CD29+, CD44+, CD90.2+, CD31-, CD45-, and CD117-). Subsequently, all BM-MSCs were able to differentiate into adipocytes and osteocytes in vitro. Finally, 30-day-old BM-MSCs of Townes-SS showed higher expression of genes related to the maintenance of HSCs (Cxcl12, Vegfa, and Angpt1) and lower expression of pro-inflammatory genes (Tnfa and Il-6). However, 60-day-old BM-MSCs of Townes-SS started to show expression of genes related to reduced HSC maintenance and increased expression of pro-inflammatory genes. CONCLUSION: These results indicates age as a modifying factor of gene expression of BM-MSCs in the context of SCD.


Assuntos
Anemia Falciforme , Células-Tronco Mesenquimais , Humanos , Animais , Camundongos , Medula Óssea , Camundongos Endogâmicos C57BL , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células da Medula Óssea/metabolismo , Diferenciação Celular
9.
Microorganisms ; 12(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38543500

RESUMO

The aim of this study was to describe epidemiological characteristics and perform SARS-CoV-2 genomic surveillance in the southeastern region of São Paulo State. During the first months of 2022, we compared weekly SARS-CoV-2 infection prevalence considering age, Ct value, and variants' lineages. An increase in the number of SARS-CoV-2-positive cases until the fourth epidemiological week of 2022 was observed. From the fourth epidemiological week onwards, the number of tests for SARS-CoV-2 diagnosis began to decrease, but the number of positive samples for SARS-CoV-2 remained high, reaching its most expressive level with a rate of 60% of infected individual cases. In this period, we observed a progressive increase in SARS-CoV-2 infection within the 0-10 age group throughout the epidemiological weeks, from 2.8% in the first epidemiological week to 9.2% in the eighth epidemiological week of 2022. We further observed significantly higher Ct values within younger patient samples compared to other older age groups. According to lineage assignment, SARS-CoV-2 (BA.1) was the most prevalent (74.5%) in the younger group, followed by BA.1.1 (23%), BA.2 (1.7%), and Delta (1%). Phylogenetic analysis showed that BA.2 sequences clustered together, indicating sustained transmission of this Omicron VOC sub-lineage by that time. Our results suggest the initial dissemination steps of the Omicron's sub-linage BA.2 into the younger group, due to specific genomic features of the detected sequences. These data provide interesting results related to the spread, emergence, and evolution of the Omicron variant in the southeast Brazilian population.

11.
Res Sq ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38343798

RESUMO

Since 2021, the emergence of variants of concern (VOC) has led Brazil to experience record numbers of in COVID-19 cases and deaths. The expanded spread of the SARS-CoV-2 combined with a low vaccination rate has contributed to the emergence of new mutations that may enhance viral fitness, leading to the persistence of the disease. Due to limitations in the real-time genomic monitoring of new variants in some Brazilian states, we aimed to investigate whether genomic surveillance, coupled with epidemiological data and SARS-CoV-2 variants spatiotemporal spread in a smaller region, can reflect the pandemic progression at a national level. Our findings revealed three SARS-CoV-2 variant replacements from 2021 to early 2022, corresponding to the introduction and increase in the frequency of Gamma, Delta, and Omicron variants, as indicated by peaks of the Effective Reproductive Number (Reff). These distinct clade replacements triggered two waves of COVID-19 cases, influenced by the increasing vaccine uptake over time. Our results indicated that the effectiveness of vaccination in preventing new cases during the Delta and Omicron circulations was six and eleven times higher, respectively, than during the period when Gamma was predominant, and it was highly efficient in reducing the number of deaths. Furthermore, we demonstrated that genomic monitoring at a local level can reflect the national trends in the spread and evolution of SARS-CoV-2.

12.
N Engl J Med ; 390(5): 397-408, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38294972

RESUMO

BACKGROUND: Butantan-Dengue Vaccine (Butantan-DV) is an investigational, single-dose, live, attenuated, tetravalent vaccine against dengue disease, but data on its overall efficacy are needed. METHODS: In an ongoing phase 3, double-blind trial in Brazil, we randomly assigned participants to receive Butantan-DV or placebo, with stratification according to age (2 to 6 years, 7 to 17 years, and 18 to 59 years); 5 years of follow-up is planned. The objectives of the trial were to evaluate overall vaccine efficacy against symptomatic, virologically confirmed dengue of any serotype occurring more than 28 days after vaccination (the primary efficacy end point), regardless of serostatus at baseline, and to describe safety up to day 21 (the primary safety end point). Here, vaccine efficacy was assessed on the basis of 2 years of follow-up for each participant, and safety as solicited vaccine-related adverse events reported up to day 21 after injection. Key secondary objectives were to assess vaccine efficacy among participants according to dengue serostatus at baseline and according to the dengue viral serotype; efficacy according to age was also assessed. RESULTS: Over a 3-year enrollment period, 16,235 participants received either Butantan-DV (10,259 participants) or placebo (5976 participants). The overall 2-year vaccine efficacy was 79.6% (95% confidence interval [CI], 70.0 to 86.3) - 73.6% (95% CI, 57.6 to 83.7) among participants with no evidence of previous dengue exposure and 89.2% (95% CI, 77.6 to 95.6) among those with a history of exposure. Vaccine efficacy was 80.1% (95% CI, 66.0 to 88.4) among participants 2 to 6 years of age, 77.8% (95% CI, 55.6 to 89.6) among those 7 to 17 years of age, and 90.0% (95% CI, 68.2 to 97.5) among those 18 to 59 years of age. Efficacy against DENV-1 was 89.5% (95% CI, 78.7 to 95.0) and against DENV-2 was 69.6% (95% CI, 50.8 to 81.5). DENV-3 and DENV-4 were not detected during the follow-up period. Solicited systemic vaccine- or placebo-related adverse events within 21 days after injection were more common with Butantan-DV than with placebo (58.3% of participants, vs. 45.6%). CONCLUSIONS: A single dose of Butantan-DV prevented symptomatic DENV-1 and DENV-2, regardless of dengue serostatus at baseline, through 2 years of follow-up. (Funded by Instituto Butantan and others; DEN-03-IB ClinicalTrials.gov number, NCT02406729, and WHO ICTRP number, U1111-1168-8679.).


Assuntos
Vacinas contra Dengue , Vírus da Dengue , Dengue , Vacinas Atenuadas , Adulto , Criança , Pré-Escolar , Humanos , Anticorpos Antivirais , Dengue/prevenção & controle , Vacinas contra Dengue/efeitos adversos , Vacinas contra Dengue/uso terapêutico , Vírus da Dengue/imunologia , Método Duplo-Cego , Vacinação , Vacinas , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/uso terapêutico , Brasil , Eficácia de Vacinas , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Seguimentos
13.
Biotechnol Prog ; 40(3): e3419, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38247123

RESUMO

Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) have shown increasing therapeutic potential in the last years. However, large production of EV is required for therapeutic purposes. Thereby, scaling up MSC cultivation in bioreactors is essential to allow culture parameters monitoring. In this study, we reported the establishment of a scalable bioprocess to produce MSC-EV in suspension cultures using spinner flasks and human collagen-coated microcarriers (3D culture system). We compared the EV production in this 3D culture system with the standard static culture using T-flasks (2D culture system). The EV produced in both systems were characterized and quantify by western blotting and nanoparticle tracking analysis. The presence of the typical protein markers CD9, CD63, and CD81 was confirmed by western blotting analyses for EV produced in both culture systems. The cell fold-increase was 5.7-fold for the 3D culture system and 4.6-fold for the 2D culture system, signifying a fold-change of 1.2 (calculated as the ratio of fold-increase 3D to fold-increase 2D). Furthermore, it should be noted that the total cell production in the spinner flask cultures was 4.8 times higher than that in T-flask cultures. The total cell production in the spinner flask cultures was 5.2-fold higher than that in T-flask cultures. While the EV specific production (particles/cell) in T-flask cultures (4.40 ± 1.21 × 108 particles/mL, p < 0.05) was higher compared to spinner flask cultures (2.10 ± 0.04 × 108 particles/mL, p < 0.05), the spinner flask culture system offers scalability, making it capable of producing enough MSC-EV at a large scale for clinical applications. Therefore, we concluded that 3D culture system evaluated here serves as an efficient transitional platform that enables the scaling up of MSC-EV production for therapeutic purposes by utilizing stirred tank bioreactors and maintaining xeno-free conditions.


Assuntos
Técnicas de Cultura de Células , Vesículas Extracelulares , Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Humanos , Técnicas de Cultura de Células/métodos , Reatores Biológicos , Células Cultivadas
14.
Front Immunol ; 14: 1309010, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259442

RESUMO

During the last two decades, the introduction of tyrosine kinase inhibitors (TKIs) to the therapy has changed the natural history of CML but progression into accelerated and blast phase (AP/BP) occurs in 3-5% of cases, especially in patients resistant to several lines of TKIs. In TKI-refractory patients in advanced phases, the only curative option is hematopoietic stem cell transplantation. We and others have shown the relevance of the expression of the Interleukin-2-Receptor α subunit (IL2RA/CD25) as a biomarker of CML progression, suggesting its potential use as a therapeutic target for CAR-based therapies. Here we show the development of a CAR-NK therapy model able to target efficiently a blast crisis cell line (K562). The design of the CAR was based on the scFv of the clinically approved anti-CD25 monoclonal antibody (Basiliximab). The CAR construct was integrated into NK92 cells resulting in the generation of CD25 CAR-NK92 cells. Target K562 cells were engineered by lentiviral gene transfer of CD25. In vitro functionality experiments and in vivo leukemogenicity experiments in NSG mice transplanted by K562-CD25 cells showed the efficacy and specificity of this strategy. These proof-of-concept studies could represent a first step for further development of this technology in refractory/relapsed (R/R) CML patients in BP as well as in R/R acute myeloblastic leukemias (AML).


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Crise Blástica/genética , Crise Blástica/terapia , Receptores de Antígenos Quiméricos/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/terapia , Células K562 , Células Matadoras Naturais
16.
Rev. Soc. Bras. Med. Trop ; 55: e0490, 2022. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1387553

RESUMO

ABSTRACT Background: The atypical chemokine receptor 1 (ACKR1) gene encodes the Duffy blood group antigens in two allelic forms: FY*A (FY*01) and FY*B (FY*02), which define the Fy(a+b-), Fy(a-b+), and Fy(a+b+) phenotypes. FY*BES (FY*02N.01) is a single T to C substitution at nucleotide -67 that prevents the FY*B from being expressed in red blood cells (RBCs). Methods: We evaluated 250 residents from a Brazilian malarial endemic region (RsMR). All individuals were phenotyped for Fya and Fyb antigens and genotyped for FY*A, FY*B, FY*B SE , and FY*B weak alleles. Results: Among the 250 individuals, 209 (83.6%) reported previous malaria infection, and 41 (16.4%) did not. The Fy(a+b+) phenotype was present in 97/250 (38.8%), while the Fy(a-b-) was present in 7/250 (2.8%). The FY*A/FY*B was found in 130/250 (52%) and the FY*A/FY*A in 45/250 (18%). The c.1-67>TC was present, in homozygosity, in 11/250 (4.4%). Among 34 individuals with the Fy(a+b-) and FYA*/FYB* mutations, 4/34 (11.8%) had homozygosity for the c.1-67T>C. One individual presented the Fy(a+b-), FY*A/FY*B, and c.1-67T>C in homozygosis, whereas the other presented the Fy(a+b-), FY*A/FY*A, and c.1-67T>C in heterozygosis. Conclusions: We reported a low prevalence of the Fy(a-b-) in persons who had previously been infected with Plasmodium vivax (67.5%). We observed that 102/141 (72.3%) individuals expressing the Fyb antigen had a P. vivax infection, indicating the importance of the Fyb antigen, silenced by a c.1-67T>C mutation in homozygosis, in preventing the P. vivax infection. We showed that the c.1-67T>C mutation in the FY*A did not silence the FY*A expression on RBCs.

17.
Hematol., Transfus. Cell Ther. (Impr.) ; 43(2): 156-164, Apr.-June 2021. tab, graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1286679

RESUMO

ABSTRACT Introduction Sickle cell disease (SCD) is a monogenic disease and it is estimated that 300,000 infants are born annually with it. Most treatments available are only palliative, whereas the allogeneic hematopoietic stem cell transplantation offers the only potential cure for SCD. Objective Generation of human autologous cells, when coupled with induced pluripotent stem cell (iPSC) technology, is a promising approach for developing study models. In this study, we provide a simple and efficient model for generating hematopoietic cells using iPSCs derived from a sickle cell anemia patient and an inexpensive in-house-prepared medium. Method This study used iPSCs previously generated from peripheral blood mononuclear cells (PBMCs) from a patient with sickle cell anemia (iPSC_scd). Hematopoietic and erythroid differentiation was performed in two steps. Firstly, with the induction of hematopoietic differentiation through embryoid body formation, we evaluated the efficiency of two serum-free media; and secondly, the induction of hematopoietic stem/progenitor cells to erythroid progenitor cells was performed. Results The patient-specific cell line generated CD34+/CD45+ and CD45+/CD43+ hematopoietic stem/progenitor cells and erythroid progenitors, comprising CD36+, CD71+ and CD235a+ populations, as well as the formation of hematopoietic colonies, including erythroid colonies, in culture in a semi-solid medium. Conclusion In conjunction, our results described a simple serum-free platform to differentiate human the iPSCs into hematopoietic progenitor cells. This platform is an emerging application of iPSCs in vitro disease modeling, which can significantly improve the search for new pharmacological drugs for sickle cell disease.


Assuntos
Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes Induzidas , Anemia Falciforme/terapia , Células Precursoras Eritroides
19.
Clinics ; 76: e2639, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1153966

RESUMO

OBJECTIVES: With the declining numbers of coronavirus disease 2019 (COVID-19) cases in the state of São Paulo, Brazil, social distancing measures have gradually been lifted. However, the risk of a surge in the number of cases cannot be overlooked. Even with the adoption of nonpharmaceutical interventions, such as restrictions on mass gatherings, wearing of masks, and complete or partial closure of schools, other public health measures may help control the epidemic. We aimed to evaluate the impact of the contact tracing of symptomatic individuals on the COVID-19 epidemic regardless of the use of diagnostic testing. METHODS: We developed a mathematical model that includes isolation of symptomatic individuals and tracing of contacts to assess the effects of the contact tracing of symptomatic individuals on the COVID-19 epidemic in the state of São Paulo. RESULTS: For a selection efficacy (proportion of isolated contacts who are infected) of 80%, cases and deaths may be reduced by 80% after 60 days when 5000 symptomatic individuals are isolated per day, each of them together with 10 contacts. On the other hand, for a selection efficacy of 20%, the number of cases and deaths may be reduced by approximately 40% and 50%, respectively, compared with the scenario in which no contact-tracing strategy is implemented. CONCLUSION: Contact tracing of symptomatic individuals may potentially be an alternative strategy when the number of diagnostic tests available is not sufficient for massive testing.


Assuntos
Humanos , Infecções por Coronavirus , Epidemias , Brasil/epidemiologia , Busca de Comunicante , Betacoronavirus
20.
Braz. arch. biol. technol ; 64: e21200817, 2021. graf
Artigo em Inglês | LILACS | ID: biblio-1345486

RESUMO

Abstract Human Embryonic Kidney 293T cells (HEK-293T) are the most common host for viral vector production and are also widely employed for recombinant protein production. These cells are typically cultured in monolayer (adherent culture) using culture medium containing fetal bovine serum (FBS), which impairs batch-to-batch reproducibility and scale-up. The adaptation of adherent cell culture to suspension culture in chemically defined serum-free culture medium is an attractive approach for large-scale bioprocess implementation while aiming for a Good Manufacturing Practice (GMP) compliant production process. Therefore, in the present study, our goal was to adapt HEK-293T cells to serum-free suspension culture conditions and evaluate the feasibility of adapted cells to be transfected using different plasmid vectors for recombinant protein production. Firstly, the cells were efficiently adapted to serum-free conditions by sequential adaptation (FBS-containing medium weaning). During the whole process, parameters such as cell growth, viability and doubling time were evaluated and compared to the control (adherent serum-supplemented HEK-293T cell culture). Afterwards, these cells were adapted to suspension culture by using Erlenmeyer flasks in an orbital shaker platform, being able to achieve meaningful cell density with high viability. Adapted cells presented a transfection efficiency of approximately 50% for all vector constructs used (1054-GFP, Factor-VIII and Factor-IX). Overall, it was possible to successfully adapt HEK-293T cells to suspension and serum-free conditions, which represents an important step towards the development of a scalable and GMP-compliant production process. In addition, adapted cells efficiently expressed the different transgene tested, opening up possibilities for its use in recombinant protein production.


Assuntos
Proteínas Recombinantes , Adaptação a Desastres , Células HEK293 , Meios de Cultura Livres de Soro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA