Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
1.
Res Sq ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38746160

RESUMO

Background: Dengue virus (DENV) and Chikungunya virus (CHIKV) pose significant public health threats in Brazil, where favorable conditions facilitated the proliferation of Aedes mosquitoes. Since the mid-1980s, Brazil has experienced annual outbreaks of DENV, with recent increases in confirmed cases. In addition, CHIKV, which was first reported in 2014, has spread across the country. The concurrent presence of these viruses has triggered public health alerts in endemic regions, underscoring the complexity of managing vector-borne diseases. Case Presentation: This report details a case of simultaneous DENV and CHIKV infections. A 77-year-old female patient who has diabetes and arrhythmia exhibited symptoms including fever, myalgia, and severe arthralgia. Laboratory tests confirmed the coinfection through RNA detection. The patient received supportive care, showed gradual improvement, and was eventually discharged. Conclusions: Coinfection with DENV and CHIKV cases reported here developed with mild outcomes. However, one of the patients did not recover from the arthralgia after presenting diagnostic challenges, which underscores the need for accurate differentiation to manage symptoms effectively. The reported cases, amidst increasing DENV outbreaks, highlight the urgency for preparedness in the healthcare system. The Ribeirão Preto region's endemicity for DENV, coupled with the rising incidence of CHIKV, emphasizes the evolving landscape of arbovirus transmission. Studies on Aedes mosquitoes suggest potential implications for human infection dynamics, warranting further investigation into arbovirus transmission efficacy and coinfection dynamics.

2.
Microorganisms ; 12(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38543500

RESUMO

The aim of this study was to describe epidemiological characteristics and perform SARS-CoV-2 genomic surveillance in the southeastern region of São Paulo State. During the first months of 2022, we compared weekly SARS-CoV-2 infection prevalence considering age, Ct value, and variants' lineages. An increase in the number of SARS-CoV-2-positive cases until the fourth epidemiological week of 2022 was observed. From the fourth epidemiological week onwards, the number of tests for SARS-CoV-2 diagnosis began to decrease, but the number of positive samples for SARS-CoV-2 remained high, reaching its most expressive level with a rate of 60% of infected individual cases. In this period, we observed a progressive increase in SARS-CoV-2 infection within the 0-10 age group throughout the epidemiological weeks, from 2.8% in the first epidemiological week to 9.2% in the eighth epidemiological week of 2022. We further observed significantly higher Ct values within younger patient samples compared to other older age groups. According to lineage assignment, SARS-CoV-2 (BA.1) was the most prevalent (74.5%) in the younger group, followed by BA.1.1 (23%), BA.2 (1.7%), and Delta (1%). Phylogenetic analysis showed that BA.2 sequences clustered together, indicating sustained transmission of this Omicron VOC sub-lineage by that time. Our results suggest the initial dissemination steps of the Omicron's sub-linage BA.2 into the younger group, due to specific genomic features of the detected sequences. These data provide interesting results related to the spread, emergence, and evolution of the Omicron variant in the southeast Brazilian population.

3.
Biotechnol Prog ; : e3419, 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38247123

RESUMO

Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) have shown increasing therapeutic potential in the last years. However, large production of EV is required for therapeutic purposes. Thereby, scaling up MSC cultivation in bioreactors is essential to allow culture parameters monitoring. In this study, we reported the establishment of a scalable bioprocess to produce MSC-EV in suspension cultures using spinner flasks and human collagen-coated microcarriers (3D culture system). We compared the EV production in this 3D culture system with the standard static culture using T-flasks (2D culture system). The EV produced in both systems were characterized and quantify by western blotting and nanoparticle tracking analysis. The presence of the typical protein markers CD9, CD63, and CD81 was confirmed by western blotting analyses for EV produced in both culture systems. The cell fold-increase was 5.7-fold for the 3D culture system and 4.6-fold for the 2D culture system, signifying a fold-change of 1.2 (calculated as the ratio of fold-increase 3D to fold-increase 2D). Furthermore, it should be noted that the total cell production in the spinner flask cultures was 4.8 times higher than that in T-flask cultures. The total cell production in the spinner flask cultures was 5.2-fold higher than that in T-flask cultures. While the EV specific production (particles/cell) in T-flask cultures (4.40 ± 1.21 × 108 particles/mL, p < 0.05) was higher compared to spinner flask cultures (2.10 ± 0.04 × 108 particles/mL, p < 0.05), the spinner flask culture system offers scalability, making it capable of producing enough MSC-EV at a large scale for clinical applications. Therefore, we concluded that 3D culture system evaluated here serves as an efficient transitional platform that enables the scaling up of MSC-EV production for therapeutic purposes by utilizing stirred tank bioreactors and maintaining xeno-free conditions.

4.
Cancers (Basel) ; 15(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38067214

RESUMO

Detection of t(9;22), and consequent BCR::ABL1 fusion, is still a marker of worse prognosis for acute lymphoblastic leukemia (ALL), with resistance to tyrosine-kinase inhibitor therapy being a major obstacle in the clinical practice for this subset of patients. In this study, we investigated the effectiveness of targeting poly-ADP-ribose polymerase (PARP) in a model of BCR::ABL1 p190+ ALL, the most common isoform to afflict ALL patients, and demonstrated the use of experimental PARP inhibitor (PARPi), AZD2461, as a therapeutic option with cytotoxic capabilities similar to that of imatinib, the current gold standard in medical care. We characterized cytostatic profiles, induced cell death, and biomarker expression modulation utilizing cell models, also providing a comprehensive genome-wide analysis through an aCGH of the model used, and further validated PARP1 differential expression in samples of ALL p190+ patients from local healthcare institutions, as well as in larger cohorts of online and readily available datasets. Overall, we demonstrate the effectiveness of PARPi in the treatment of BCR::ABL1 p190+ ALL cell models and that PARP1 is differentially expressed in patient samples. We hope our findings help expand the characterization of molecular profiles in ALL settings and guide future investigations into novel biomarker detection and pharmacological choices in clinical practice.

5.
Microorganisms ; 11(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38004755

RESUMO

The emergence of SARS-CoV-2 and the subsequent pandemic have prompted extensive diagnostic and clinical efforts to mitigate viral spread. However, these strategies have largely overlooked the presence of other respiratory viruses. Acute respiratory diseases in pediatric patients can be caused by a diverse range of viral agents, and metagenomics represents a powerful tool for their characterization. This study aimed to investigate the viral abundance in pediatric patients with acute respiratory symptoms who tested negative for SARS-CoV-2 during the Omicron pandemic wave. To achieve this, viral metagenomics and next-generation sequencing were employed on 96 nasopharyngeal swab samples, which were organized into 12 pools, with each pool consisting of eight individual samples. Metagenomic analysis revealed that the most prevalent viruses associated with acute disease in pediatric patients were respiratory syncytial virus (detected in all pools) and enteroviruses, which are known to cause significant morbidity and mortality in children. Additionally, clinically significant viruses such as mumps orthorubulavirus, human metapneumovirus, influenza A, and a wide array of human herpesviruses (1, 3-7) were identified. These findings highlight the extensive potential of viral metagenomics in identifying viruses other than SARS-CoV-2 that contribute to acute infections in children. Consequently, this methodology should garner clinical attention in terms of differential diagnosis and the development of public policies to address such conditions in the global pediatric population.

6.
Front Immunol ; 14: 1226518, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818365

RESUMO

Introduction: Natural killer 92 (NK-92) cells are an attractive therapeutic approach as alternative chimeric antigen receptor (CAR) carriers, different from T cells, once they can be used in the allogeneic setting. The modest in vivo outcomes observed with NK-92 cells continue to present hurdles in successfully translating NK-92 cell therapies into clinical applications. Adoptive transfer of CAR-NK-92 cells holds out the promise of therapeutic benefit at a lower rate of adverse events due to the absence of GvHD and cytokine release syndrome. However, it has not achieved breakthrough clinical results yet, and further improvement of CAR-NK-92 cells is necessary. Methods: In this study, we conducted a comparative analysis between CD19-targeted CAR (CAR.19) co-expressing IL-15 (CAR.19-IL15) with IL-15/IL-15Rα (CAR.19-IL15/IL15Rα) to promote NK cell proliferation, activation, and cytotoxic activity against B-cell leukemia. CAR constructs were cloned into lentiviral vector and transduced into NK-92 cell line. Potency of CAR-NK cells were assessed against CD19-expressing cell lines NALM-6 or Raji in vitro and in vivo in a murine model. Tumor burden was measured by bioluminescence. Results: We demonstrated that a fourth- generation CD19-targeted CAR (CAR.19) co-expressing IL-15 linked to its receptor IL-15/IL-15Rα (CAR.19-IL-15/IL-15Rα) significantly enhanced NK-92 cell proliferation, proinflammatory cytokine secretion, and cytotoxic activity against B-cell cancer cell lines in vitro and in a xenograft mouse model. Conclusion: Together with the results of the systematic analysis of the transcriptome of activated NK-92 CAR variants, this supports the notion that IL-15/IL-15Rα comprising fourth-generation CARs may overcome the limitations of NK-92 cell-based targeted tumor therapies in vivo by providing the necessary growth and activation signals.


Assuntos
Receptores de Antígenos Quiméricos , Humanos , Camundongos , Animais , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Interleucina-15/genética , Interleucina-15/metabolismo , Linhagem Celular Tumoral , Células Matadoras Naturais , Antígenos CD19 , Proliferação de Células
7.
Pathogens ; 12(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37764930

RESUMO

Fulminant hepatitis is a severe clinical disease characterized by a marked decline in liver function and encephalopathy. In a previous survey, using metagenomics in a group of 27 patients with this clinical condition, we observed an expressive quantity of reads of the Human pegivirus-1 (HPgV-1). Therefore, the objective of this study was to evaluate the frequency, molecular features, and HPgV-1 circulating genotypes in patients with fulminant hepatitis. After testing the collected plasma samples, we discovered twelve samples (44.4%) that were positive for HPgV-1 RNA (using both real-time and nested PCR). The positive samples presented a mean cycle threshold (Ct) of 28.5 (±7.3). Genotyping assignments revealed that all HPgV-1 positive samples belonged to the HPgV-1 genotype 2 (both subgenotypes 2A and 2B were identified). Although HPgV-1 is considered a commensal virus, little is known regarding its prevalence and genotypes in cases of fulminant hepatitis. More research is needed to understand whether HPgV-1 can be implicated in clinical disorders and infectious diseases.

8.
Adv Exp Med Biol ; 1429: 85-110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37486518

RESUMO

Our current genetic engineering capacity through synthetic biology and genome editing is the foundation of a revolution in biomedical science: the use of genetically programmed cells as therapeutics. The prime example of this paradigm is the adoptive transfer of genetically engineered T cells to express tumor-specific receptors, such as chimeric antigen receptors (CARs) or engineered T-cell receptors (TCR). This approach has led to unprecedented complete remission rates in patients with otherwise incurable hematological malignancies. However, this approach is still largely ineffective against solid tumors, which comprise the vast majority of neoplasms. Also, limitations associated with the autologous nature of this therapy and shared markers between cancer cells and T cells further restrict the access to these therapies. Here, we described how cutting-edge genome editing approaches have been applied to unlock the full potential of these revolutionary therapies, thereby increasing therapeutic efficacy and patient accessibility.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Edição de Genes , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos/uso terapêutico , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T , Neoplasias/genética , Neoplasias/terapia , Engenharia Celular
9.
Viruses ; 15(4)2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37112979

RESUMO

Since December 2019, the world has been experiencing the COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and we now face the emergence of several variants. We aimed to assess the differences between the wild-type (Wt) (Wuhan) strain and the P.1 (Gamma) and Delta variants using infected K18-hACE2 mice. The clinical manifestations, behavior, virus load, pulmonary capacity, and histopathological alterations were analyzed. The P.1-infected mice showed weight loss and more severe clinical manifestations of COVID-19 than the Wt and Delta-infected mice. The respiratory capacity was reduced in the P.1-infected mice compared to the other groups. Pulmonary histological findings demonstrated that a more aggressive disease was generated by the P.1 and Delta variants compared to the Wt strain of the virus. The quantification of the SARS-CoV-2 viral copies varied greatly among the infected mice although it was higher in P.1-infected mice on the day of death. Our data revealed that K18-hACE2 mice infected with the P.1 variant develop a more severe infectious disease than those infected with the other variants, despite the significant heterogeneity among the mice.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Camundongos Transgênicos , Pandemias , SARS-CoV-2/genética , Virulência
10.
IJID Reg ; 7: 222-229, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37102137

RESUMO

Background: The long-term humoral immune response after vaccination varies between vaccines and is dependent on the accuracy of the antibody test. A better understanding of the vaccine immune response may help to define vaccination strategies against coronavirus disease 2019 (COVID-19). Objective: To investigate the long-term immunological response to CoronaVac vaccine and determinants of breakthrough COVID-19 infection. Methods: A long-term, prospective cohort study involving vaccinated adult and elderly subjects was conducted to investigate the presence of anti-RBD-specific immunoglobulin (Ig)G, anti-nucleocapsid IgG and anti-spike trimeric protein IgG. Antibody level dynamics and risk factors associated with breakthrough COVID-19 infection were investigated. Results: In total, 3902 participants were included in this study. Vaccination with two doses of CoronaVac and a booster dose increased the levels of anti-RBD-specific IgG, anti-nucleocapsid IgG and anti-spike trimeric IgG significantly. In adults, anti-nucleocapsid IgG and anti-spike trimeric IgG levels decreased significantly 7 months after the second dose. In adults and the elderly, the levels of anti-spike trimeric IgG and anti-RBD IgG decreased significantly 4 and 6 months after the booster dose, respectively. Previous exposure to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and anti-spike trimeric IgG titres was independently associated with a lower probability of post-vaccination infection. Conclusions: A significant increase in antibody levels was found after two doses of CoronaVac and a booster dose. Antibody titres declined significantly 7 months post-vaccination in participants who did not receive a booster dose. Higher levels of antibodies and previous SARS-CoV-2 infection were associated with protection against breakthrough COVID-19.

11.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37111270

RESUMO

BACKGROUND: Steroid-refractory acute graft-vs.-host disease (SR-aGVHD) is a complication of allogeneic hematopoietic stem cell transplantation with a dismal prognosis and for which there is no consensus-based second-line therapy. Ruxolitinib is not easily accessible in many countries. A possible therapy is the administration of mesenchymal stromal cells (MSCs). METHODS: In this retrospective study, 52 patients with severe SR-aGVHD were treated with MSCs from umbilical cord (UC-MSCs) in nine institutions. RESULTS: The median (range) age was 12.5 (0.3-65) years and the mean ± SD dose (×106/kg) was 4.73 ± 1.3 per infusion (median of four infusions). Overall (OR) and complete response (CR) rates on day 28 were 63.5% and 36.6%, respectively. Children (n = 35) had better OR (71.5% vs. 47.1%, p = 0.12), CR (48.6% vs. 11.8%, p = 0.03), overall survival (p = 0.0006), and relapse-free survival (p = 0.0014) than adults (n = 17). Acute adverse events (all of them mild or moderate) were detected in 32.7% of patients, with no significant difference in children and adult groups (p = 1.0). CONCLUSIONS: UC-MSCs are a feasible alternative therapy for SR-aGVHD, especially in children. The safety profile is favorable.

12.
J Med Virol ; 95(4): e28688, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36946498

RESUMO

Viral metagenomics has been extensively applied for the identification of emerging or poorly characterized viruses. In this study, we applied metagenomics for the identification of viral infections among pediatric patients with acute respiratory disease, but who tested negative for SARS-CoV-2. Twelve pools composed of eight nasopharyngeal specimens were submitted to viral metagenomics. Surprisingly, in two of the pools, we identified reads belonging to the poorly characterized Malawi polyomavirus (MWPyV). Then, the samples composing the positive pools were individually tested using quantitative polymerase chain reaction for identification of the MWPyV index cases. MWPyV-positive samples were also submitted to respiratory virus panel testing due to the metagenomic identification of different clinically important viruses. Of note, MWPyV-positive samples tested also positive for respiratory syncytial virus types A and B. In this study, we retrieved two complete MWPyV genome sequences from the index samples that were submitted to phylogenetic inference to investigate their viral origin. Our study represents the first molecular and genomic characterization of MWPyV obtained from pediatric patients in South America. The detection of MWPyV in acutely infected infants suggests that this virus might participate (coparticipate) in cases of respiratory symptoms. Nevertheless, future studies based on testing of a larger number of clinical samples and MWPyV complete genomes appear to be necessary to elucidate if this emerging polyomavirus might be clinically important.


Assuntos
COVID-19 , Infecções por Polyomavirus , Polyomavirus , Infecções Respiratórias , Vírus , Lactente , Criança , Humanos , Metagenômica , Brasil/epidemiologia , Malaui/epidemiologia , Filogenia , SARS-CoV-2 , Infecções por Polyomavirus/epidemiologia , Polyomavirus/genética , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/epidemiologia
13.
Viruses ; 15(2)2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36851541

RESUMO

São Paulo is the financial center of Brazil, with a population of over 12 million, that receives travelers from all over the world for business and tourism. It was the first city in Brazil to report a case of COVID-19 that rapidly spread across the city despite the implementation of the restriction measures. Despite many reports, much is still unknown regarding the genomic diversity and transmission dynamics of this virus in the city of São Paulo. Thus, in this study, we provide a retrospective overview of the COVID-19 epidemic in São Paulo City, Southeastern, Brazil, by generating a total of 9995 near-complete genome sequences from all the city's different macro-regions (North, West, Central, East, South, and Southeast). Our analysis revealed that multiple independent introduction events of different variants (mainly Gamma, Delta, and Omicron) occurred throughout time. Additionally, our estimates of viral movement within the different macro-regions further suggested that the East and the Southeast regions were the largest contributors to the Gamma and Delta viral exchanges to other regions. Meanwhile, the North region had a higher contribution to the dispersion of the Omicron variant. Together, our results reinforce the importance of increasing SARS-CoV-2 genomic monitoring within the city and the country to track the real-time evolution of the virus and to detect earlier any eventual emergency of new variants of concern that could undermine the fight against COVID-19 in Brazil and worldwide.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2/genética , Brasil/epidemiologia , América Latina , Estudos Retrospectivos
14.
PLoS One ; 18(1): e0280284, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36638103

RESUMO

BACKGROUND: By the fact that pregnant and postpartum women are currently using COVID-19 vaccines, ensure their safety is critical. So, more safety evidence is crucial to include this new technology to their vaccine's calendar and to develop public policies regarding the support and training of Health Care Personnel. This study aims to describe the adverse events (AE) of COVID-19 vaccines in pregnant and postpartum women in the early stage of vaccination campaign in Brazil. METHODS: An observational cross-sectional study using data from the Brazilian surveillance information system to characterize the AE of COVID-19 vaccines (Sinovac/Butantan, Pfizer/BioNTech, AstraZeneca and Janssen) in Brazilian pregnant and postpartum women from April to August 2021. Frequency and incidence rate of AE for COVID-19 vaccines were assessed. RESULTS: 3,333 AE following immunization were reported for the study population. AE incidence was 309.4/100,000 doses (95% CI 297.23, 321.51). Within the vaccines available, Sinovac/Butantan had the lowest incidence (74.08/100,000 doses; 95% CI 63.47, 84.69). Systemic events were the most frequent notified (82.07%), followed by local (11.93%) and maternal (4.74%), being most of them classified as non-severe (90.65%). CONCLUSION: Our results corroborate the recommendation of vaccination for these groups. Even though, further studies appraising a longer observation time are still needed to provide a broader safety aspect for the vaccines currently under use for this population.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacinas , Feminino , Humanos , Gravidez , Brasil/epidemiologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Estudos Transversais , Período Pós-Parto , Vacinação/efeitos adversos
15.
BMC Public Health ; 23(1): 15, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36597102

RESUMO

BACKGROUND: Brazil has been dramatically hit by the SARS-CoV-2 pandemic and is a world leader in COVID-19 morbidity and mortality. Additionally, the largest country of Latin America has been a continuous source of SARS-CoV-2 variants and shows extraordinary variability of the pandemic strains probably related to the country´s outstanding position as a Latin American economical and transportation hub. Not all regions of the country show sufficient infrastructure for SARS-CoV-2 diagnosis and genotyping which can negatively impact the pandemic response. METHODS: Due to this reason and to disburden the diagnostic system of the inner São Paulo State, the Butantan Institute established the Mobile Laboratory (in Portuguese: LabMovel) for SARS-CoV-2 testing which started a trip of the most important "hotspots" of the most populous Brazilian region. The LabMovel initiated in two important cities of the State: Aparecida do Norte (an important religious center) and the Baixada Santista region which incorporates the port of Santos, the busiest in Latin America. The LabMovel was fully equipped with an automatized system for SARS-CoV-2 diagnosis and sequencing/genotyping. It also integrated the laboratory systems for patient records and results divulgation including in the Federal Brazilian Healthcare System. RESULTS: Currently,16,678 samples were tested, among them 1,217 from Aparecida and 4,564 from Baixada Santista. We tracked the delta introductio in the tested regions with its high diversification. The established mobile SARS-CoV-2 laboratory had a major impact on the Public Health System of the included cities including timely delivery of the results to the healthcare agents and the Federal Healthcare system, evaluation of the vaccination status of the positive individuals in the background of exponential vaccination process in Brazil and scientific and technological divulgation of the fieldwork to the most vulnerable populations. CONCLUSIONS: The SARS-CoV-2 pandemic has demonstrated worldwide the importance of science to fight against this viral agent and the LabMovel shows that it is possible to integrate researchers, clinicians, healthcare workers and patients to take rapid actions that can in fact mitigate this and other epidemiological situations.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , Teste para COVID-19 , Brasil/epidemiologia , Pandemias/prevenção & controle , Populações Vulneráveis
16.
Transfus Clin Biol ; 30(1): 143-146, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36306977

RESUMO

Merkel cell polyomavirus (MCPyV) is an oncogenic virus that has been etiologically linked to Merkel cell carcinoma. Low levels of MCPyV DNA have been detected in blood donors with unclear impact on transfusion. The prevalence of MCPyV DNA in Brazilian blood donors is unclear. Therefore, the objective of this study was to evaluate the MCPyV DNA prevalence among Brazilian blood donors. We examined the presence of MCPyV DNA by real-time PCR (qPCR) in a total of 450 serum samples obtained from blood donors from three Brazilian regions (North, Central-West and South). The overall estimated MCPyV DNA prevalence was 1.1% (CI = 95%, 0.16-2.06%). Divided by region, in North Brazil (city of Macapa, state of Amapá) and South Brazil (city of Santa Maria, state of Rio Grande do Sul), the MCPyV prevalence was the same: 1.33% (CI = 95%, range 0.0-3.14%). In Central-West Brazil (city of Brasilia), the MCPyV prevalence was 0.6% (CI = 95%, 0.0-1.96%). All MCPyV positive samples showed a high cycle threshold (median Ct = 35.5), most probably related to the low viral load. More studies are necessary to unveil the impact of this oncogenic virus on transfusion medicine and if such exists, especially in regards of its infectivity and transmission potential.


Assuntos
Poliomavírus das Células de Merkel , Infecções por Polyomavirus , Neoplasias Cutâneas , Humanos , Poliomavírus das Células de Merkel/genética , Infecções por Polyomavirus/epidemiologia , Brasil/epidemiologia , Prevalência , Doadores de Sangue , DNA Viral/genética
17.
Transfus Apher Sci ; 62(1): 103516, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35941020

RESUMO

Human gemykibivirus-2 (HuGkV-2) belonging to the Gemykibivirus genus (Genomoviridae family) is an emerging DNA virus which has been described as a component of the virome of a wide variety of samples including clinical ones. So far, the HuGkV-2 DNA prevalence in the human population as well as its clinical impact are completely unknown. The objective of this study was to investigate the HuGkV-2 DNA prevalence among Brazilian healthy blood donors from three different geographic regions. A total of 450 blood samples were screened for HuGkV-2 DNA (150 samples were from the Brazilian Amazon, 150 from Midwest Brazil and 150 from South Brazil). The overall HuGkV-2 DNA prevalence was 7.8 %. Considering the examined regions, the highest prevalence was observed in the Brazilian Amazon (city of Macapa, state of Amapa), 15.3 %, followed by the Midwest Brazil (city of Brasilia, Federal District) (6.0 %) and South Brazil (city of Santa Maria, Rio Grande do Sul State) (2.0 %). This study gives preliminary insights on the molecular prevalence of HuGkV-2 DNA among Brazilian blood donors, highlighting that the highest HuGkV-2 prevalence was recorded in the Brazilian Amazon. However, more studies regarding the prevalence, transmission routes and any possible clinical effects appear to be crucial in order to understand the impact of this emerging viral agent.


Assuntos
Doadores de Sangue , Humanos , Brasil/epidemiologia , Prevalência
18.
Viruses ; 14(10)2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36298703

RESUMO

From a country with one of the highest SARS-CoV-2 morbidity and mortality rates, Brazil has implemented one of the most successful vaccination programs. Brazil's first model city vaccination program was performed by the CoronaVac vaccine (Sinovac Biotech) in the town of Serrana, São Paulo State. To evaluate the vaccination effect on the SARS-CoV-2 molecular dynamics and clinical outcomes, we performed SARS-CoV-2 molecular surveillance on 4375 complete genomes obtained between June 2020 and April 2022 in this location. This study included the period between the initial SARS-CoV-2 introduction and during the vaccination process. We observed that the SARS-CoV-2 substitution dynamics in Serrana followed the viral molecular epidemiology in Brazil, including the initial identification of the ancestral lineages (B.1.1.28 and B.1.1.33) and epidemic waves of variants of concern (VOC) including the Gamma, Delta, and, more recently, Omicron. Most probably, as a result of the immunization campaign, the mortality during the Gamma and Delta VOC was significantly reduced compared to the rest of Brazil, which was also related to lower morbidity. Our phylogenetic analysis revealed the evolutionary history of the SARS-CoV-2 in this location and showed that multiple introduction events have occurred over time. The evaluation of the COVID-19 clinical outcome revealed that most cases were mild (88.9%, 98.1%, 99.1% to Gamma, Delta, and Omicron, respectively) regardless of the infecting VOC. In conclusion, we observed that vaccination was responsible for reducing the death toll rate and related COVID-19 morbidity, especially during the gamma and Delta VOC; however, it does not prevent the rapid substitution rate and morbidity of the Omicron VOC.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Brasil/epidemiologia , Filogenia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinação
19.
Viruses ; 14(9)2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36146740

RESUMO

Viral metagenomics is increasingly being used for the identification of emerging and re-emerging viral pathogens in clinical samples with unknown etiology. The objective of this study was to shield light on the metavirome composition in clinical samples obtained from patients with clinical history compatible with an arboviral infection, but that presented inconclusive results when tested using RT-qPCR. The inconclusive amplification results might be an indication of the presence of an emerging arboviral agent that is inefficiently amplified by conventional PCR techniques. A total of eight serum samples with inconclusive amplification results for the routinely tested arboviruses-dengue (DENV), Zika (ZIKV), and Chikungunya (CHIKV) obtained during DENV and CHIKV outbreaks registered in the state of Alagoas, Northeast Brazil between July and August 2021-were submitted to metagenomic next-generation sequencing assay using NextSeq 2000 and bioinformatic pipeline for viral discovery. The performed bioinformatic analysis revealed the presence of two arboviruses: DENV type 2 (DENV-2) and CHIKV with a high genome coverage. Further, the metavirome of those samples revealed the presence of multiple commensal viruses apparently without clinical significance. The phylogenetic analysis demonstrated that the DENV-2 genome belonged to the Asian/American genotype and clustered with other Brazilian strains. The identified CHIKV genome was taxonomically assigned as ECSA genotype, which is circulating in Brazil. Together, our results reinforce the utility of metagenomics as a valuable tool for viral identification in samples with inconclusive arboviral amplification. Viral metagenomics is one of the most potent methods for the identification of emerging arboviruses.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Arbovírus/genética , Febre de Chikungunya/diagnóstico , Febre de Chikungunya/epidemiologia , Vírus Chikungunya/genética , Doenças Transmissíveis Emergentes , Dengue/diagnóstico , Dengue/epidemiologia , Vírus da Dengue/genética , Humanos , Metagenômica , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Zika virus/genética
20.
Viruses ; 14(9)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36146888

RESUMO

The authors hereby request the inclusion of two authors (Olivia Teixeira and Maria Cristina Nonato) in the recently published article in Viruses entitled "Nucleocapsid (N) gene mutations of SARS-CoV-2 can affect real-time RT-PCR diagnostic and impact false-negative results" [...].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA