Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(12)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38140090

RESUMO

Early detection and treatment of cancers can significantly increase patient prognosis and enhance the quality of life of affected patients. The emerging significance of the tumor microenvironment (TME) as a new frontier for cancer diagnosis and therapy may be exploited by radiolabeled tracers for diagnostic imaging techniques such as positron emission tomography (PET). Cancer-associated fibroblasts (CAFs) within the TME are identified by biomarkers such as fibroblast activation protein alpha (FAPα), which are expressed on their surfaces. Targeting FAPα using small-molecule 18F-labeled inhibitors (FAPIs) has recently garnered significant attention for non-invasive tumor visualization using PET. Herein, two potent aryl-fluorosulfate-based FAPIs, 12 and 13, were synthetically prepared, and their inhibition potency was determined using a fluorimetric FAP assay to be IC50 9.63 and 4.17 nM, respectively. Radiofluorination was performed via the sulfur [18F]fluoride exchange ([18F]SuFEx) reaction to furnish [18F]12 and [18F]13 in high activity yields (AY) of 39-56% and molar activities (Am) between 20-55 GBq/µmol. In vitro experiments focused on the stability of the radiolabeled FAPIs after incubation with human serum, liver microsomes and liver cytosol. Preliminary PET studies of the radioligands were performed in healthy mice to investigate the in vivo biodistribution and 18F defluorination rate. Fast pharmacokinetics for the FAP-targeting tracers were retained and considerable bone uptake, caused by either 18F defluorination or radioligand accumulation, was observed. In summary, our findings demonstrate the efficiency of [18F]SuFEx as a radiolabeling method as well as its advantages and limitations with respect to PET tracer development.

2.
Cancers (Basel) ; 13(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885141

RESUMO

PURPOSE: The preclinical evaluation of 3-l- and 3-d-[18F]FPhe in comparison to [18F]FET, an established tracer for tumor imaging. METHODS: In vitro studies were conducted with MCF-7, PC-3, and U87 MG human tumor cell lines. In vivo µPET studies were conducted in healthy rats with/without the inhibition of peripheral aromatic l-amino acid decarboxylase by benserazide pretreatment (n = 3 each), in mice bearing subcutaneous MCF-7 or PC-3 tumor xenografts (n = 10), and in rats bearing orthotopic U87 MG tumor xenografts (n = 14). Tracer accumulation was quantified by SUVmax, SUVmean and tumor-to-brain ratios (TBrR). RESULTS: The uptake of 3-l-[18F]FPhe in MCF-7 and PC-3 cells was significantly higher relative to [18F]FET. The uptake of all three tracers was significantly reduced by the suppression of amino acid transport systems L or ASC. 3-l-[18F]FPhe but not 3-d-[18F]FPhe exhibited protein incorporation. In benserazide-treated healthy rats, brain uptake after 42-120 min was significantly higher for 3-d-[18F]FPhe vs. 3-l-[18F]FPhe. [18F]FET showed significantly higher uptake into subcutaneous MCF-7 tumors (52-60 min p.i.), while early uptake into orthotopic U87 MG tumors was significantly higher for 3-l-[18F]FPhe (SUVmax: 3-l-[18F]FPhe, 107.6 ± 11.3; 3-d-[18F]FPhe, 86.0 ± 4.3; [18F]FET, 90.2 ± 7.7). Increased tumoral expression of LAT1 and ASCT2 was confirmed immunohistologically. CONCLUSION: Both novel tracers enable accurate tumor delineation with an imaging quality comparable to [18F]FET.

3.
Molecules ; 26(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34577021

RESUMO

6-l-[18F]Fluoro-m-tyrosine (6-l-[18F]FMT) represents a valuable alternative to 6-l-[18F]FDOPA which is conventionally used for the diagnosis and staging of Parkinson's disease. However, clinical applications of 6-l-[18F]FMT have been limited by the paucity of practical production methods for its automated production. Herein we describe the practical preparation of 6-l-[18F]FMT using alcohol-enhanced Cu-mediated radiofluorination of Bpin-substituted chiral Ni(II) complex in the presence of non-basic Bu4ONTf using a volatile iPrOH/MeCN mixture as reaction solvent. A simple and fast radiolabeling procedure afforded the tracer in 20.0 ± 3.0% activity yield within 70 min. The developed method was directly implemented onto a modified TracerLab FX C Pro platform originally designed for 11C-labeling. This method enables an uncomplicated switch between 11C- and 18F-labeling. The simplicity of the developed procedure enables its easy adaptation to other commercially available remote-controlled synthesis units and paves the way for a widespread application of 6-l-[18F]FMT in the clinic.

4.
Chem Commun (Camb) ; 56(66): 9505-9508, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32686800

RESUMO

A general protocol for the preparation of 18F-labeled AAAs and α-methyl-AAAs applying alcohol-enhanced Cu-mediated radiofluorination of Bpin-substituted chiral complexes using Ni/Cu-BPX templates as double protecting groups is reported. The chiral auxiliaries are easily accessible from commercially available starting materials in a few synthetic steps. The versatility of the method was demonstrated by the high-yielding preparation of a series of [18F]F-AAAs and the successful implementation of the protocol into automated radiosynthesis modules.

5.
J Org Chem ; 84(15): 9811-9818, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31293163

RESUMO

The reactivity of hydrogen peroxide and catalytic hydroiodic acid toward 3,6-dimethoxy-2-(cycloamino)anilines is tunable to give ring-fused benzimidazoles or 1,4,6,9-tetramethoxyphenazine in high yield. Mechanisms via a detected nitroso-intermediate are proposed for oxidative cyclization and the unexpected intermolecular displacement of the oxazine. An aqueous solution of molecular iodine is capable of the same transformations. Oxidative demethylation gave targeted benzimidazolequinones, including without cleavage of the incorporated oxetane.


Assuntos
Antineoplásicos/química , Benzimidazóis/química , Descoberta de Drogas , Éteres Cíclicos/química , Morfolinas/química , Fenazinas/química , Quinonas/química , Ácidos/química , Antineoplásicos/síntese química , Benzimidazóis/síntese química , Catálise , Ciclização , Peróxido de Hidrogênio/química , Compostos de Iodo/química , Estrutura Molecular , Oxirredução , Fenazinas/síntese química , Quinonas/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA