Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.426
Filtrar
1.
Sci Rep ; 14(1): 12868, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834690

RESUMO

Acute myeloid leukemia (AML) is fatal in the majority of adults. Identification of new therapeutic targets and their pharmacologic modulators are needed to improve outcomes. Previous studies had shown that immunization of rabbits with normal peripheral WBCs that had been incubated with fluorodinitrobenzene elicited high titer antibodies that bound to a spectrum of human leukemias. We report that proteomic analyses of immunoaffinity-purified lysates of primary AML cells showed enrichment of scaffolding protein IQGAP1. Immunohistochemistry and gene-expression analyses confirmed IQGAP1 mRNA overexpression in various cytogenetic subtypes of primary human AML compared to normal hematopoietic cells. shRNA knockdown of IQGAP1 blocked proliferation and clonogenicity of human leukemia cell-lines. To develop small molecules targeting IQGAP1 we performed in-silico screening of 212,966 compounds, selected 4 hits targeting the IQGAP1-GRD domain, and conducted SAR of the 'fittest hit' to identify UR778Br, a prototypical agent targeting IQGAP1. UR778Br inhibited proliferation, induced apoptosis, resulted in G2/M arrest, and inhibited colony formation by leukemia cell-lines and primary-AML while sparing normal marrow cells. UR778Br exhibited favorable ADME/T profiles and drug-likeness to treat AML. In summary, AML shows response to IQGAP1 inhibition, and UR778Br, identified through in-silico studies, selectively targeted AML cells while sparing normal marrow.


Assuntos
Proliferação de Células , Leucemia Mieloide Aguda , Proteínas Ativadoras de ras GTPase , Humanos , Proteínas Ativadoras de ras GTPase/metabolismo , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/antagonistas & inibidores , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/genética , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Simulação por Computador , Antineoplásicos/farmacologia , Domínios Proteicos , Animais , Proteômica/métodos
2.
Cancer Discov ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787341

RESUMO

Acute myeloid leukemia stem cells (LSCs) are uniquely reliant on oxidative phosphorylation (OXPHOS) for survival. Moreover, maintenance of OXPHOS is dependent on BCL-2, creating a therapeutic opportunity to target LSCs using the BCL-2 inhibitor venetoclax. While venetoclax-based regimens have shown promising clinical activity, the emergence of drug resistance is prevalent. Thus, in the present study, we investigated how mitochondrial properties may influence venetoclax responsiveness. Our data show that utilization of mitochondrial calcium is fundamentally different between drug-responsive and non-responsive LSCs. By comparison, venetoclax-resistant LSCs demonstrate a more active metabolic (i.e. OXPHOS) status with relatively high levels of calcium. Consequently, we tested genetic and pharmacological approaches to target the mitochondrial calcium uniporter, MCU. We demonstrate that inhibition of calcium uptake reduces OXPHOS and leads to eradication of venetoclax-resistant LSCs. These findings demonstrate a central role for calcium signaling in LSCs and provide an avenue for clinical management of venetoclax resistance.

3.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798540

RESUMO

Signals from the microenvironment are known to be critical for development, sustaining adult stem cells, and for oncogenic progression. While candidate niche-driven signals that can promote cancer progression have been identified1-6, concerted efforts to comprehensively map microenvironmental ligands for cancer stem cell specific surface receptors have been lacking. Here, we use temporal single cell RNA-sequencing to identify molecular cues from the bone marrow stromal niche that engage leukemia stem cells (LSC) during oncogenic progression. We integrate these data with our RNA-seq analysis of human LSCs from distinct aggressive myeloid cancer subtypes and our CRISPR based in vivo LSC dependency map7 to develop a temporal receptor-ligand interactome essential for disease progression. These analyses identify the taurine transporter (TauT)-taurine axis as a critical dependency of myeloid malignancies. We show that taurine production is restricted to the osteolineage population during cancer initiation and expansion. Inhibiting taurine synthesis in osteolineage cells impairs LSC growth and survival. Our experiments with the TauT genetic loss of function murine model indicate that its loss significantly impairs the progression of aggressive myeloid leukemias in vivo by downregulating glycolysis. Further, TauT inhibition using a small molecule strongly impairs the growth and survival of patient derived myeloid leukemia cells. Finally, we show that TauT inhibition can synergize with the clinically approved oxidative phosphorylation inhibitor venetoclax8, 9 to block the growth of primary human leukemia cells. Given that aggressive myeloid leukemias continue to be refractory to current therapies and have poor prognosis, our work indicates targeting the taurine transporter may be of therapeutic significance. Collectively, our data establishes a temporal landscape of stromal signals during cancer progression and identifies taurine-taurine transporter signaling as an important new regulator of myeloid malignancies.

4.
Mol Cancer Ther ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781103

RESUMO

Endocrine therapies (ET) with CDK4/6 inhibition are the standard treatment for estrogen receptor-α-positive (ER+) breast cancer, however drug resistance is common. In this study, proteogenomic analyses of 22 ER+ breast cancer patient-derived xenografts (PDXs) demonstrated that PKMYT1, a WEE1 homolog, is estradiol (E2) regulated in E2-dependent PDXs and constitutively expressed when growth is E2-independent. In clinical samples, high PKMYT1 mRNA levels associated with resistance to both ET and CDK4/6 inhibition. The PKMYT1 inhibitor lunresertib (RP-6306) with gemcitabine selectively and synergistically reduced the viability of ET and palbociclib-resistant ER+ breast cancer cells without functional p53. In vitro the combination increased DNA damage and apoptosis. In palbociclib-resistant, TP53 mutant PDX organoids and xenografts, RP-6306 with low-dose gemcitabine induced greater tumor volume reduction compared to treatment with either single agent. Our study demonstrates the clinical potential of RP-6306 in combination with gemcitabine for ET and CDK4/6 inhibitor resistant TP53 mutant ER+ breast cancer.

5.
Clin Cancer Res ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38723281

RESUMO

PURPOSE: Immunomodulatory drugs (IMiDs), such as lenalidomide and pomalidomide, are cornerstone therapies in Multiple Myeloma (MM), yet patients inevitably become refractory. IMiDs exert cytotoxicity through inducing Cereblon-dependent proteasomal degradation of IKZF1 and IKZF3, resulting in downregulation of the oncogenic transcription factors IRF4 and MYC. To date, clinical IMiD resistance independent of CRBN or IKZF1/3 has not been well-explored. Here, we investigated the roles of IRF4 and MYC in this context. EXPERIMENTAL DESIGN: Using bone marrow aspirates from patients with IMiD naïve or refractory MM, we examined IKZF1/3 protein levels and IRF4/MYC gene expression following ex vivo pomalidomide treatment via flow cytometry and qPCR. We also assessed ex vivo sensitivity to the MYC inhibitor, MYCi975, using flow cytometry. RESULTS: We discovered that while pomalidomide frequently led to IKZF1/3 degradation in MM cells, MYC gene expression was unaffected by pomalidomide in most IMiD refractory samples. We subsequently demonstrated that MYCi975 exerted strong anti-MM effects in both IMiD naïve and refractory samples. Unexpectedly, we identified CD8+ T cells from patients with MM as crucial effectors of MYCi975-induced cytotoxicity in primary MM samples, and we discovered MYCi975 enhanced the cytotoxic functions of memory CD8+ T cells. We lastly observed synergy between MYCi975 and pomalidomide in IMiD refractory samples, suggesting restoring MYC downregulation can re-sensitize refractory MM to IMiDs. CONCLUSION: Our study supports the concept that MYC represents an Achille's heel in MM across disease states and that MYCi975 may be a promising therapeutic for patients with MM, particularly in combination with IMiDs.

7.
Proc Natl Acad Sci U S A ; 121(23): e2317873121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38768326

RESUMO

Water is a limited resource in Arctic watersheds with continuous permafrost because freezing conditions in winter and the impermeability of permafrost limit storage and connectivity between surface water and deep groundwater. However, groundwater can still be an important source of surface water in such settings, feeding springs and large aufeis fields that are abundant in cold regions and generating runoff when precipitation is rare. Whether groundwater is sourced from suprapermafrost taliks or deeper regional aquifers will impact water availability as the Arctic continues to warm and thaw. Previous research is ambiguous about the role of deep groundwater, leading to uncertainty regarding Arctic water availability and changing water resources. We analyzed chemistry and residence times of spring, stream, and river waters in the continuous permafrost zone of Alaska, spanning the mountains to the coastal plain. Water chemistry and age tracers show that surface waters are predominately sourced from recent precipitation and have short (<50 y) subsurface residence times. Remote sensing indicates trends in the areal extent of aufeis over the last 37 y, and correlations between aufeis extent and previous year summer temperature. Together, these data indicate that surface waters in continuous permafrost regions may be impacted by short flow paths and shallow suprapermafrost aquifers that are highly sensitive to climatic and hydrologic change over annual timescales. Despite the lack of connection to regional aquifers, continued warming and permafrost thaw may promote deepening of the shallow subsurface aquifers and creation of shallow taliks, providing some resilience to Arctic freshwater ecosystems.

8.
PLoS One ; 19(4): e0293861, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38603714

RESUMO

The goal of this study was to characterize the bacterial diversity on different melon varieties grown in different regions of the US, and determine the influence that region, rind netting, and variety of melon has on the composition of the melon microbiome. Assessing the bacterial diversity of the microbiome on the melon rind can identify antagonistic and protagonistic bacteria for foodborne pathogens and spoilage organisms to improve melon safety, prolong shelf-life, and/or improve overall plant health. Bacterial community composition of melons (n = 603) grown in seven locations over a four-year period were used for 16S rRNA gene amplicon sequencing and analysis to identify bacterial diversity and constituents. Statistically significant differences in alpha diversity based on the rind netting and growing region (p < 0.01) were found among the melon samples. Principal Coordinate Analysis based on the Bray-Curtis dissimilarity distance matrix found that the melon bacterial communities clustered more by region rather than melon variety (R2 value: 0.09 & R2 value: 0.02 respectively). Taxonomic profiling among the growing regions found Enterobacteriaceae, Bacillaceae, Microbacteriaceae, and Pseudomonadaceae present on the different melon rinds at an abundance of ≥ 0.1%, but no specific core microbiome was found for netted melons. However, a core of Pseudomonadaceae, Bacillaceae, and Exiguobacteraceae were found for non-netted melons. The results of this study indicate that bacterial diversity is driven more by the region that the melons were grown in compared to rind netting or melon type. Establishing the foundation for regional differences could improve melon safety, shelf-life, and quality as well as the consumers' health.


Assuntos
Bacillaceae , Cucumis melo , Cucurbitaceae , Estados Unidos , Cucurbitaceae/microbiologia , Cucumis melo/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genética , Enterobacteriaceae
9.
PLoS One ; 19(4): e0297453, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625898

RESUMO

Assessing the microbes present on tree fruit carpospheres as the fruit enters postharvest processing could have useful applications, as these microbes could have a major influence on spoilage, food safety, verification of packing process controls, or other aspects of processing. The goal of this study was to establish a baseline profile of bacterial communities associated with apple (pome fruit), peach (stone fruit), and Navel orange (citrus fruit) at harvest. We found that commercial peaches had the greatest bacterial richness followed by oranges then apples. Time of harvest significantly changed bacterial diversity in oranges and peaches, but not apples. Shifts in diversity varied by fruit type, where 70% of the variability in beta diversity on the apple carposphere was driven by the gain and loss of species (i.e., nestedness). The peach and orange carposphere bacterial community shifts were driven by nearly an even split between turnover (species replacement) and nestedness. We identified a small core microbiome for apples across and between growing seasons that included only Methylobacteriaceae and Sphingomonadaceae among the samples, while peaches had a larger core microbiome composed of five bacterial families: Bacillaceae, Geodermtophilaceae, Nocardioidaceae, Micrococcaeceae, and Trueperaceae. There was a relatively diverse core microbiome for oranges that shared all the families present on apples and peaches, except for Trueperaceae, but also included an additional nine bacterial families not shared including Oxalobacteraceae, Cytophagaceae, and Comamonadaceae. Overall, our findings illustrate the important temporal dynamics of bacterial communities found on major commercial tree fruit, but also the core bacterial families that constantly remain with both implications being important entering postharvest packing and processing.


Assuntos
Citrus sinensis , Prunus persica , Humanos , Estações do Ano , Bactérias , Citrus sinensis/microbiologia , Frutas/microbiologia
10.
Nat Immunol ; 25(4): 703-715, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514887

RESUMO

Analysis of the human hematopoietic progenitor compartment is being transformed by single-cell multimodal approaches. Cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) enables coupled surface protein and transcriptome profiling, thereby revealing genomic programs underlying progenitor states. To perform CITE-seq systematically on primary human bone marrow cells, we used titrations with 266 CITE-seq antibodies (antibody-derived tags) and machine learning to optimize a panel of 132 antibodies. Multimodal analysis resolved >80 stem, progenitor, immune, stromal and transitional cells defined by distinctive surface markers and transcriptomes. This dataset enables flow cytometry solutions for in silico-predicted cell states and identifies dozens of cell surface markers consistently detected across donors spanning race and sex. Finally, aligning annotations from this atlas, we nominate normal marrow equivalents for acute myeloid leukemia stem cell populations that differ in clinical response. This atlas serves as an advanced digital resource for hematopoietic progenitor analyses in human health and disease.


Assuntos
Células-Tronco Hematopoéticas , Transcriptoma , Humanos , Medula Óssea , Perfilação da Expressão Gênica , Células da Medula Óssea
11.
PLoS Negl Trop Dis ; 18(3): e0012018, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427700

RESUMO

Campylobacter causes bacterial enteritis, dysentery, and growth faltering in children in low- and middle-income countries (LMICs). Campylobacter spp. are fastidious organisms, and their detection often relies on culture independent diagnostic technologies, especially in LMICs. Campylobacter jejuni and Campylobacter coli are most often the infectious agents and in high income settings together account for 95% of Campylobacter infections. Several other Campylobacter species have been detected in LMIC children at an increased prevalence relative to high income settings. After doing extensive whole genome sequencing of isolates of C. jejuni and C. coli in Peru, we observed heterogeneity in the binding sites for the main species-specific PCR assay (cadF) and designed an alternative rpsKD-based qPCR assay to detect both C. jejuni and C. coli. The rpsKD-based qPCR assay identified 23% more C.jejuni/ C.coli samples than the cadF assay among 47 Campylobacter genus positive cadF negative samples verified to have C. jejuni and or C. coli with shotgun metagenomics. This assay can be expected to be useful in diagnostic studies of enteric infectious diseases and be useful in revising the attribution estimates of Campylobacter in LMICs.


Assuntos
Infecções por Campylobacter , Campylobacter coli , Campylobacter jejuni , Campylobacter , Criança , Humanos , Campylobacter coli/genética , Reação em Cadeia da Polimerase , Infecções por Campylobacter/diagnóstico , Infecções por Campylobacter/microbiologia , Fezes/microbiologia
12.
Leuk Res ; 139: 107469, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38479337

RESUMO

BACKGROUND: The proteasome inhibitor bortezomib is one of the primary therapies used for the haematological malignancy multiple myeloma (MM). However, intrinsic or acquired resistance to bortezomib, via mechanisms that are not fully elucidated, is a barrier to successful treatment in many patients. Our previous studies have shown that elevated expression of the chemokine receptor CCR1 in MM plasma cells in newly diagnosed MM patients is associated with poor prognosis. Here, we hypothesised that the poor prognosis conferred by CCR1 expression is, in part, due to a CCR1-mediated decrease in MM plasma cell sensitivity to bortezomib. METHODS: In order to investigate the role of CCR1 in MM cells, CCR1 was knocked out in human myeloma cell lines OPM2 and U266 using CRISPR-Cas9. Additionally, CCR1 was overexpressed in the mouse MM cell line 5TGM1. The effect of bortezomib on CCR1 knockout or CCR1-overexpressing cells was then assessed by WST-1 assay, with or without CCL3 siRNA knockdown or addition of recombinant human CCL3. NSG mice were inoculated intratibially with OPM2-CCR1KO cells and were treated with 0.7 mg/kg bortezomib or vehicle twice per week for 3 weeks and GFP+ tumour cells in the bone marrow were quantitated by flow cytometry. The effect of CCR1 overexpression or knockout on unfolded protein response pathways was assessed using qPCR for ATF4, HSPA5, XBP1, ERN1 and CHOP and Western blot for IRE1α and p-Jnk. RESULTS: Using CCR1 overexpression or CRIPSR-Cas9-mediated CCR1 knockout in MM cell lines, we found that CCR1 expression significantly decreases sensitivity to bortezomib in vitro, independent of the CCR1 ligand CCL3. In addition, CCR1 knockout rendered the human MM cell line OPM2 more sensitive to bortezomib in an intratibial MM model in NSG mice in vivo. Moreover, CCR1 expression negatively regulated the expression of the unfolded protein response receptor IRE1 and downstream target gene XBP1, suggesting this pathway may be responsible for the decreased bortezomib sensitivity of CCR1-expressing cells. CONCLUSIONS: Taken together, these studies suggest that CCR1 expression may be associated with decreased response to bortezomib in MM cell lines.


Assuntos
Mieloma Múltiplo , Humanos , Animais , Camundongos , Bortezomib/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Linhagem Celular Tumoral , Receptores de Quimiocinas , Endorribonucleases , Proteínas Serina-Treonina Quinases , Receptores CCR1/genética , Receptores CCR1/metabolismo
13.
Cogn Emot ; : 1-19, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349272

RESUMO

Social anxiety may disrupt the empathic process, and well-regulated empathy is critical for navigating the social world. Two studies aimed to further understand empathy in the context of social anxiety. Study 1 compared individuals with elevated or normative social anxiety on a measure assessing cognitive and affective empathy for positive and negative emotions conveyed by other people ("targets"), completed under social threat. Relative to individuals with normative social anxiety, individuals with elevated social anxiety had greater cognitive empathy and no differences in affective empathy, regardless of emotion type. As greater cognitive empathy can be maladaptive, Study 2 tested whether this could be down-regulated. Individuals with elevated social anxiety underwent emotional working memory training (eWMT) for negative emotional information, or control training (CT). Effects on an empathy measure completed under social threat were assessed. Cognitive empathy for negative emotions decreased following eWMT but not CT, and this was only evident for those with higher pre-training working memory capacity. Cognitive empathy for positive emotions and affective empathy were not affected. Overall, social anxiety is associated with aberrant elevated cognitive empathy for negative and positive emotions, and the deviation in cognitive empathy for negative emotions can be regulated with eWMT for certain individuals.Trial registration: Australian New Zealand Clinical Trials Registry identifier: ACTRN12618001196235..

14.
Microorganisms ; 12(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38399730

RESUMO

Campylobacter jejuni and Campylobacter coli are well known for their natural competence, i.e., their capacity for the uptake of naked DNA with subsequent transformation. This study identifies non-transformable C. jejuni and C. coli strains from domestic animals and employs genomic analysis to investigate the strain genotypes and their associated genetic mechanisms. The results reveal genetic associations leading to a non-transformable state, including functional DNase genes from bacteriophages and mutations within the cts-encoded DNA-uptake system, which impact the initial steps of the DNA uptake during natural transformation. Interestingly, all 38 tested C. jejuni ST-50 strains from the United States exhibit a high prevalence of non-transformability, and the strains harbor a variety of these genetic markers. This research emphasizes the role of these genetic markers in hindering the transfer of antimicrobial resistance (AMR) determinants, providing valuable insights into the genetic diversity of Campylobacter. As ST-50 is a major clone of C. jejuni globally, we additionally determined the prevalence of the genetic markers for non-transformability among C. jejuni ST-50 from different regions of the world, revealing distinct patterns of evolution and a strong selective pressure on the loss of competence in ST-50 strains, particularly in the agricultural environment in the United States. Our findings contribute to a comprehensive understanding of genetic exchange mechanisms within Campylobacter strains, and their implications for antimicrobial resistance dissemination and evolutionary pathways within specific lineages.

15.
ACS Nano ; 18(9): 7148-7160, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38383159

RESUMO

Room-temperature magnetically switchable materials play a vital role in current and upcoming quantum technologies, such as spintronics, molecular switches, and data storage devices. The increasing miniaturization of device architectures produces a need to develop analytical tools capable of precisely probing spin information at the single-particle level. In this work, we demonstrate a methodology using negatively charged nitrogen vacancies (NV-) in fluorescent nanodiamond (FND) particles to probe the magnetic switching of a spin crossover (SCO) metal-organic framework (MOF), [Fe(1,6-naphthyridine)2(Ag(CN)2)2] material (1), and a single-molecule photomagnet [X(18-crown-6)(H2O)3]Fe(CN)6·2H2O, where X = Eu and Dy (materials 2a and 2b, respectively), in response to heat, light, and electron beam exposure. We employ correlative light-electron microscopy using transmission electron microscopy (TEM) finder grids to accurately image and sense spin-spin interacting particles down to the single-particle level. We used surface-sensitive optically detected magnetic resonance (ODMR) and magnetic modulation (MM) of FND photoluminescence (PL) to sense spins to a distance of ca. 10-30 nm. We show that ODMR and MM sensing was not sensitive to the temperature-induced SCO of FeII in 1 as formation of paramagnetic FeIII through surface oxidation (detected by X-ray photoelectron spectroscopy) on heating obscured the signal of bulk SCO switching. We found that proximal FNDs could effectively sense the chemical transformations induced by the 200 keV electron beam in 1, namely, AgI → Ag0 and FeII → FeIII. However, transformations induced by the electron beam are irreversible as they substantially disrupt the structure of MOF particles. Finally, we demonstrate NV- sensing of reversible photomagnetic switching, FeIII + (18-crown-6) ⇆ FeII + (18-crown-6)+ •, triggered in 2a and 2b by 405 nm light. The photoredox process of 2a and 2b proved to be the best candidate for room-temperature single-particle magnetic switching utilizing FNDs as a sensor, which could have applications into next-generation quantum technologies.

16.
ACS Appl Mater Interfaces ; 16(2): 2154-2165, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38181419

RESUMO

Extracellular matrices interface with cells to promote cell growth and tissue development. Given this critical role, matrix mimetics are introduced to enable biomedical materials ranging from tissue engineering scaffolds and tumor models to organoids for drug screening and implant surface coatings. Traditional microscopy methods are used to evaluate such materials in their ability to support exploitable cell responses, which are expressed in changes in cell proliferation rates and morphology. However, the physical imaging methods do not capture the chemistry of cells at cell-matrix interfaces. Herein, we report hyperspectral imaging to map the chemistry of human primary and embryonic stem cells grown on matrix materials, both native and artificial. We provide the statistical analysis of changes in lipid and protein content of the cells obtained from infrared spectral maps to conclude matrix morphologies as a major determinant of biochemical cell responses. The study demonstrates an effective methodology for evaluating bespoke matrix materials directly at cell-matrix interfaces.


Assuntos
Materiais Biocompatíveis , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Matriz Extracelular/química , Células-Tronco Embrionárias
17.
J Glob Antimicrob Resist ; 36: 309-318, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272215

RESUMO

OBJECTIVES: Antimicrobial resistant (AMR) Campylobacter is a global health threat; however, there is limited information on genomic determinants of resistance in low- and middle-income countries. We evaluated genomic determinants of AMR using a collection of whole genome sequenced Campylobacter jejuni and C. coli isolates from Iquitos, Peru. METHODS: Campylobacter isolates from two paediatric cohort studies enriched with isolates that demonstrated resistance to ciprofloxacin and azithromycin were sequenced and mined for AMR determinants. RESULTS: The gyrA mutation leading to the Thr86Ile amino acid change was the only gyrA mutation associated with fluoroquinolone resistance identified. The A2075G mutation in 23S rRNA was present, but three other 23S rRNA mutations previously associated with macrolide resistance were not identified. A resistant-enhancing variant of the cmeABC efflux pump genotype (RE-cmeABC) was identified in 36.1% (35/97) of C. jejuni genomes and 17.9% (12/67) of C. coli genomes. Mutations identified in the CmeR-binding site, an inverted repeat sequence in the cmeABC promoter region that increases expression of the operon, were identified in 24/97 C. jejuni and 14/67 C. coli genomes. The presence of these variants, in addition to RE-cmeABC, was noted in 18 of the 24 C. jejuni and 9 of the 14 C. coli genomes. CONCLUSIONS: Both RE-cmeABC and mutations in the CmeR-binding site were strongly associated with the MDR phenotype in C. jejuni and C. coli. This is the first report of RE-cmeABC in Peru and suggests it is a major driver of resistance to the principal therapies used to treat human campylobacteriosis in this setting.


Assuntos
Antibacterianos , Campylobacter , Humanos , Criança , Antibacterianos/farmacologia , Peru , RNA Ribossômico 23S/genética , Farmacorresistência Bacteriana/genética , Macrolídeos , Campylobacter/genética , Genômica
18.
Artigo em Inglês | MEDLINE | ID: mdl-38248565

RESUMO

This study examines support for the Department of Housing and Urban Development's (HUD) mandatory smoke-free rule up to four years post-rule among smokers and non-smokers. A repeated cross-sectional design was used where District of Columbia public housing residents aged 18+ (n = 529) completed surveys during three time points: July 2018 (pre-rule), November 2018-March 2020 (post-rule), and September 2020-December 2022 (post-rule + COVID-19). Full support for the rule was indicated by agreeing that smoking should not be allowed in all indoor locations and within 25 feet of buildings. Descriptive statistics showed significant differences in support across time for smokers (5.3%, 30.7%, and 22.5%, respectively) and similar support across time for nonsmokers (48.2%, 52.2%, and 40.0%, respectively). In unstratified regression analysis, pre-rule support was lower than when the rule was in effect (aOR = 0.47, 95% CI = 0.25, 0.90), and tobacco users were less likely to support the rule (aOR = 0.34, 95% CI = 0.23, 0.50). Stratified logistic regression results showed that pre-rule support was lower among smokers compared to post-rule support (aOR = 0.14, 95% CI = 0.03, 0.59); support among nonsmokers did not vary by time. Findings overall indicate low support for the smoke-free rule up to 4 years post-implementation. Engaging residents with the rule and promoting health and well-being may further enhance policy effectiveness and acceptance.


Assuntos
COVID-19 , Habitação Popular , Humanos , Estudos Transversais , não Fumantes , Fumantes
19.
Mol Ecol ; : e17286, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287749

RESUMO

Mesozooplankton is a key component of the ocean, regulating global processes such as the carbon pump, and ensuring energy transfer from lower to higher trophic levels. Yet, knowledge on mesozooplankton diversity, distribution and connectivity at global scale is still fragmented. To fill this gap, we applied DNA metabarcoding to mesozooplankton samples collected during the Malaspina-2010 circumnavigation expedition across the Atlantic, Indian and Pacific oceans from the surface to bathypelagic depths. We highlight the still scarce knowledge on global mesozooplankton diversity and identify the Indian Ocean and the deep sea as the oceanic regions with the highest proportion of hidden diversity. We report no consistent alpha-diversity patterns for mesozooplankton at a global scale, neither across vertical nor horizontal gradients. However, beta-diversity analysis suggests horizontal and vertical structuring of mesozooplankton communities mostly attributed to turnover and reveals an increase in mesozooplankton beta-diversity with depth, indicating reduced connectivity at deeper layers. Additionally, we identify a water mass type-mediated structuring of mesozooplankton bathypelagic communities instead of an oceanic basin-mediated as observed at upper layers. This suggests limited dispersal at deep ocean layers, most likely due to weaker currents and lower mixing of water mass types, thus reinforcing the importance of oceanic currents and barriers to dispersal in shaping global plankton communities.

20.
ACS Nano ; 18(4): 2958-2971, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38251654

RESUMO

Single-atom dynamics of noble-gas elements have been investigated using time-resolved transmission electron microscopy (TEM), with direct observation providing for a deeper understanding of chemical bonding, reactivity, and states of matter at the nanoscale. We report on a nanoscale system consisting of endohedral fullerenes encapsulated within single-walled carbon nanotubes ((Kr@C60)@SWCNT), capable of the delivery and release of krypton atoms on-demand, via coalescence of host fullerene cages under the action of the electron beam (in situ) or heat (ex situ). The state and dynamics of Kr atoms were investigated by energy dispersive X-ray spectroscopy (EDS), electron energy loss spectroscopy (EELS), and X-ray photoelectron spectroscopy (XPS). Kr atom positions were measured precisely using aberration-corrected high-resolution TEM (AC-HRTEM), aberration-corrected scanning TEM (AC-STEM), and single-atom spectroscopic imaging (STEM-EELS). The electron beam drove the formation of 2Kr@C120 capsules, in which van der Waals Kr2 and transient covalent [Kr2]+ bonding states were identified. Thermal coalescence led to the formation of longer coalesced nested nanotubes containing more loosely bound Krn chains (n = 3-6). In some instances, delocalization of Kr atomic positions was confirmed by STEM analysis as the transition to a one-dimensional (1D) gas, as Kr atoms were constrained to only one degree of translational freedom within long, well-annealed, nested nanotubes. Such nested nanotube structures were investigated by Raman spectroscopy. This material represents a highly compressed and dimensionally constrained 1D gas stable under ambient conditions. Direct atomic-scale imaging has revealed elusive bonding states and a previously unseen 1D gaseous state of matter of this noble gas element, demonstrating TEM to be a powerful tool in the discovery of chemistry at the single-atom level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA