Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Neuroeng Rehabil ; 21(1): 110, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926876

RESUMO

INTRODUCTION: People with Parkinson's Disease (PD) show abnormal gait patterns compromising their independence and quality of life. Among all gait alterations due to PD, reduced step length, increased cadence, and decreased ground-reaction force during the loading response and push-off phases are the most common. Wearable biofeedback technologies offer the possibility to provide correlated single or multi-modal stimuli associated with specific gait events or gait performance, hence promoting subjects' awareness of their gait disturbances. Moreover, the portability and applicability in clinical and home settings for gait rehabilitation increase the efficiency in the management of PD. The Wearable Vibrotactile Bidirectional Interface (BI) is a biofeedback device designed to extract gait features in real-time and deliver a customized vibrotactile stimulus at the waist of PD subjects synchronously with specific gait phases. The aims of this study were to measure the effect of the BI on gait parameters usually compromised by the typical bradykinetic gait and to assess its usability and safety in clinical practice. METHODS: In this case series, seven subjects (age: 70.4 ± 8.1 years; H&Y: 2.7 ± 0.3) used the BI and performed a test on a 10-meter walkway (10mWT) and a two-minute walk test (2MWT) as pre-training (Pre-trn) and post-training (Post-trn) assessments. Gait tests were executed in random order with (Bf) and without (No-Bf) the activation of the biofeedback stimulus. All subjects performed three training sessions of 40 min to familiarize themselves with the BI during walking activities. A descriptive analysis of gait parameters (i.e., gait speed, step length, cadence, walking distance, double-support phase) was carried out. The 2-sided Wilcoxon sign-test was used to assess differences between Bf and No-Bf assessments (p < 0.05). RESULTS: After training subjects improved gait speed (Pre-trn_No-Bf: 0.72(0.59,0.72) m/sec; Post-trn_Bf: 0.95(0.69,0.98) m/sec; p = 0.043) and step length (Pre-trn_No-Bf: 0.87(0.81,0.96) meters; Post-trn_Bf: 1.05(0.96,1.14) meters; p = 0.023) using the biofeedback during the 10mWT. Similarly, subjects' walking distance improved (Pre-trn_No-Bf: 97.5 (80.3,110.8) meters; Post-trn_Bf: 118.5(99.3,129.3) meters; p = 0.028) and the duration of the double-support phase decreased (Pre-trn_No-Bf: 29.7(26.8,31.7) %; Post-trn_Bf: 27.2(24.6,28.7) %; p = 0.018) during the 2MWT. An immediate effect of the BI was detected in cadence (Pre-trn_No-Bf: 108(103.8,116.7) step/min; Pre-trn_Bf: 101.4(96.3,111.4) step/min; p = 0.028) at Pre-trn, and in walking distance at Post-trn (Post-trn_No-Bf: 112.5(97.5,124.5) meters; Post-trn_Bf: 118.5(99.3,129.3) meters; p = 0.043). SUS scores were 77.5 in five subjects and 80.3 in two subjects. In terms of safety, all subjects completed the protocol without any adverse events. CONCLUSION: The BI seems to be usable and safe for PD users. Temporal gait parameters have been measured during clinical walking tests providing detailed outcomes. A short period of training with the BI suggests improvements in the gait patterns of people with PD. This research serves as preliminary support for future integration of the BI as an instrument for clinical assessment and rehabilitation in people with PD, both in hospital and remote environments. TRIAL REGISTRATION: The study protocol was registered (DGDMF.VI/P/I.5.i.m.2/2019/1297) and approved by the General Directorate of Medical Devices and Pharmaceutical Service of the Italian Ministry of Health and by the ethics committee of the Lombardy region (Milan, Italy).


Assuntos
Biorretroalimentação Psicológica , Transtornos Neurológicos da Marcha , Doença de Parkinson , Dispositivos Eletrônicos Vestíveis , Humanos , Doença de Parkinson/reabilitação , Doença de Parkinson/complicações , Doença de Parkinson/fisiopatologia , Idoso , Masculino , Biorretroalimentação Psicológica/instrumentação , Biorretroalimentação Psicológica/métodos , Feminino , Transtornos Neurológicos da Marcha/reabilitação , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Pessoa de Meia-Idade , Marcha/fisiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-38526883

RESUMO

Individuals with Parkinson's disease (PD) are characterized by gait and balance disorders limiting their independence and quality of life. Home-based rehabilitation programs, combined with drug therapy, demonstrated to be beneficial in the daily-life activities of PD subjects. Sensorized shoes can extract balance- and gait-related data in home-based scenarios and allow clinicians to monitor subjects' activities. In this study, we verified the capability of a pair of sensorized shoes (including pressure-sensitive insoles and one inertial measurement unit) in assessing ground-level walking and body weight shift exercises. The shoes can potentially be combined with a sensory biofeedback module that provides vibrotactile cues to individuals. Sensorized shoes have been assessed in terms of the capability of detecting relevant gait events (heel strike, flat foot, toe off), estimating spatiotemporal parameters of gait (stance, swing, and double support duration, stride length), estimating gait variables (vertical ground-reaction force, vGRF; coordinate of the center of pressure along the longitudinal axes of the feet, yCoP; and the dorsiflexion angle of the feet, Pitch angle). The assessment compared the outcomes with those extracted from the gold standard equipment, namely force platforms and a motion capture system. Results of this comparison with 9 PD subjects showed an overall median absolute error lower than 0.03 s in detecting the foot-contact, foot-off, and heel-off gait events while performing ground-level walking and lower than 0.15 s in body weight shift exercises. The computation of spatiotemporal parameters of gait showed median errors of 1.62 % of the stance phase duration and 0.002 m of the step length. Regarding the estimation of vGRF, yCoP, and Pitch angle, the median across-subjects Pearson correlation coefficient was 0.90, 0.94, and 0.91, respectively. These results confirm the suitability of the sensorized shoes for quantifying biomechanical features during body weight shift and gait exercises of PD and pave the way to exploit the biofeedback modules of the bidirectional interface in future studies.


Assuntos
Doença de Parkinson , Humanos , Sapatos , Qualidade de Vida , Marcha , Caminhada , Peso Corporal , Fenômenos Biomecânicos
3.
Artigo em Inglês | MEDLINE | ID: mdl-38507380

RESUMO

Reducing energy consumption during walking is a critical goal for transtibial amputees. The study presents the evaluation of a semi-active prosthesis with five transtibial amputees. The prosthesis has a low-power actuator integrated in parallel into an energy-storing-and-releasing foot. The actuator is controlled to compress the foot during the stance phase, supplementing the natural compression due to the user's dynamic interaction with the ground, particularly during the ankle dorsiflexion phase, and to release the energy stored in the foot during the push-off phase, to enhance propulsion. The control strategy is adaptive to the user's gait patterns and speed. The clinical protocol to evaluate the system included treadmill and overground walking tasks. The results showed that walking with the semi-active prosthesis reduced the Physiological Cost Index of transtibial amputees by up to 16% compared to walking using the subjects' proprietary prosthesis. No significant alterations were observed in the spatiotemporal gait parameters of the participants, indicating the module's compatibility with users' natural walking patterns. These findings highlight the potential of the mechatronic actuator in effectively reducing energy expenditure during walking for transtibial amputees. The proposed prosthesis may bring a positive impact on the quality of life, mobility, and functional performance of individuals with transtibial amputation.


Assuntos
Amputados , Membros Artificiais , Humanos , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos , Marcha/fisiologia , Desenho de Prótese , Qualidade de Vida , Caminhada/fisiologia
4.
Appl Ergon ; 117: 104226, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38219374

RESUMO

Upper-limb occupational exoskeletons to support the workers' upper arms are typically designed to provide antigravitational support. Although typical work activities require workers to perform static and dynamic actions, the majority of the studies in literature investigated the effects of upper-limb occupational exoskeletons in static and quasi-static activities, while only a few works focused on dynamic tasks. This article presents a systematic evaluation of the effects of different levels of antigravitational support (from about 60% to 100% of the arm gravitational load) provided by a passive upper-limb occupational exoskeleton on muscles' activity during repetitive arm movements. The effect of the exoskeleton on muscle activity was evaluated by the comparison of muscle activations with and without the exoskeleton. The average muscle activation was computed considering shoulder full flexion-extension cycles, and sub-movements, namely the arm-lifting (i.e., flexion) and arm-lowering (i.e., extension) movements. Results showed a quasi-linear correlation between antigravitational support and muscle activity reductions, both when considering the full flexion-extension cycle and in the arm-lifting movement (reductions were up to 64 and 61% compared to not wearing the exoskeleton, respectively). When considering the arm-lowering movement, providing antigravitational support close to or higher than 100% of the arm gravitational load led to increased muscle activations of the extensors (up to 127%), suggesting that such an amount of antigravitational support may be not effective for a complete biomechanical load reduction on the shoulder district in dynamic tasks.


Assuntos
Braço , Exoesqueleto Energizado , Humanos , Braço/fisiologia , Extremidade Superior/fisiologia , Movimento/fisiologia , Músculos , Fenômenos Biomecânicos , Eletromiografia/métodos
5.
Artigo em Inglês | MEDLINE | ID: mdl-38064320

RESUMO

NESM- γ is an upper-limb exoskeleton to train motor functions of post-stroke patients. Based on the kinesiology of the upper limb, the NESM- γ includes a four degrees-of-freedom (DOF) active kinematic chain for the shoulder and elbow, along with a passive chain for self-aligning robotic joint axes with the glenohumeral (GH) joint's center of rotation. The passive chain accounts for scapulohumeral rhythm and trunk rotations. To assess self-aligning performance, we analyzed the kinematic and electromyographic data of the shoulder in eight healthy subjects performing reaching tasks under three experimental conditions: moving without the exoskeleton (baseline), moving while wearing the exoskeleton with the passive DOFs properly functioning, i.e., unlocked (human-in-the-loop(HIL)-unlocked), and with the passive DOFs locked (HIL-locked). Comparison of baseline and HIL-unlocked conditions showed nearly unchanged anatomical movement patterns, with a root-mean-square error of shoulder angle lower than 5 deg and median deviations of the GH center of rotation below 20 mm. Peak muscle activations showed no significant differences. In contrast, the HIL-locked condition deviated significantly from the baseline, as observed by the trunk and GH trajectory deviations up to 50 mm, accompanied by increased peak muscle activations in the Deltoid and Upper Trapezius muscles. These findings highlight the need for kinematic solutions in shoulder exoskeletons that can accommodate the movements of the entire shoulder complex and trunk to achieve kinematic compatibility.


Assuntos
Exoesqueleto Energizado , Ombro , Humanos , Ombro/fisiologia , Fenômenos Biomecânicos , Extremidade Superior/fisiologia , Cotovelo
6.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941254

RESUMO

Accurate gait phase estimation algorithms can be used to synchronize the action of wearable robots to the volitional user movements in real time. Current-day gait phase estimation methods are designed mostly for rhythmic tasks and evaluated in highly controlled walking environments (namely, steady-state walking). Here, we implemented adaptive Dynamic Movement Primitives (aDMP) for continuous real-time phase estimation in the most common locomotion activities of daily living, which are level-ground walking, stair negotiation, and ramp negotiation. The proposed method uses the thigh roll angle and foot-contact information and was tested in real time with five subjects. The estimated phase resulted in an average root-mean-square error of 3.98% ± 1.33% and a final estimation error of 0.60% ± 0.55% with respect to the linear phase. The results of this study constitute a viable groundwork for future phase-based control strategies for lower-limb wearable robots, such as robotic prostheses or exoskeletons.


Assuntos
Atividades Cotidianas , Locomoção , Humanos , Caminhada , Marcha , Extremidade Inferior , Fenômenos Biomecânicos
7.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941281

RESUMO

This work presents an intention decoding algorithm that can be used to control a 4 degrees-of-freedom shoulder-elbow exoskeleton in reaching tasks. The algorithm was designed to assist the movement of users with upper-limb impairments who can initiate the movement by themselves. It relies on the observation of the initial part of the user's movement through joint angle measures and aims to estimate in real-time the phase of the movement and predict the goal position of the hand in the reaching task. The algorithm is based on adaptive Dynamic Movement Primitives and Gaussian Mixture Models. The performance of the algorithm was verified in robot-assisted planar reaching movements performed by one healthy subject wearing the exoskeleton. Tests included movements of different amplitudes and orientations. Results showed that the algorithm could predict the hand's final position with an error lower than 5 cm after 0.25 s from the movement onset, and that the final position reached during the tests was on average less than 4 cm far from the target position. Finally, the effects of the assistance were observed in a reduction of the activation of the Biceps Brachii and of the time to execute the reaching tasks.


Assuntos
Cotovelo , Exoesqueleto Energizado , Humanos , Cotovelo/fisiologia , Ombro , Intenção , Extremidade Superior/fisiologia
8.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941285

RESUMO

This work describes the design and preliminary characterization of a novel portable hand exoskeleton for poststroke rehabilitation. The platform actively mobilizes the index-metacarpophalangeal (I-MCP) joint, and it additionally offers individual rigid support to distal degrees of freedom (DoFs) of the index and thumb. The test-bench characterization proves the capability of the device to render torques at the I-MCP level with high fidelity within frequencies of interest for the application (up to 3 Hz). The introduction of a feed-forward friction compensation at the actuator level lowers the output mechanical stiffness by 32%, contributing to a highly transparent behavior; moreover, the functionality of the platform in rendering different interaction strategies (patient/robot-in-charge) is tested with three healthy subjects, showing the potential of the device to provide assistance as needed.


Assuntos
Exoesqueleto Energizado , Reabilitação Neurológica , Humanos , Mãos , Polegar , Articulação Metacarpofalângica
9.
Artigo em Inglês | MEDLINE | ID: mdl-37883286

RESUMO

Control systems of robotic prostheses should be designed to decode the users' intent to start, stop, or change locomotion; and to select the suitable control strategy, accordingly. This paper describes a locomotion mode recognition algorithm based on adaptive Dynamic Movement Primitive models used as locomotion templates. The models take foot-ground contact information and thigh roll angle, measured by an inertial measurement unit, for generating continuous model variables to extract features for a set of Support Vector Machines. The proposed algorithm was tested offline on data acquired from 10 intact subjects and 1 subject with transtibial amputation, in ground-level walking and stair ascending/descending activities. Following subject-specific training, results on intact subjects showed that the algorithm can classify initiatory and steady-state steps with up to 100.00% median accuracy medially at 28.45% and 27.40% of the swing phase, respectively. While the transitory steps were classified with up to 87.30% median accuracy medially at 90.54% of the swing phase. Results with data of the transtibial amputee showed that the algorithm classified initiatory, steady-state, and transitory steps with up to 92.59%, 100%, and 93.10% median accuracies medially at 19.48%, 51.47%, and 93.33% of the swing phase, respectively. The results support the feasibility of this approach in robotic prosthesis control.


Assuntos
Amputados , Membros Artificiais , Humanos , Locomoção , Caminhada , Amputação Cirúrgica , Algoritmos
10.
Sensors (Basel) ; 23(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37177725

RESUMO

Recent years have witnessed relevant advancements in the quality of life of persons with lower limb amputations thanks to the technological developments in prosthetics. However, prostheses that provide information about the foot-ground interaction, and in particular about terrain irregularities, are still missing on the market. The lack of tactile feedback from the foot sole might lead subjects to step on uneven terrains, causing an increase in the risk of falling. To address this issue, a biomimetic vibrotactile feedback system that conveys information about gait and terrain features sensed by a dedicated insole has been assessed with intact subjects. After having shortly experienced both even and uneven terrains, the recruited subjects discriminated them with an accuracy of 87.5%, solely relying on the replay of the vibrotactile feedback. With the objective of exploring the human decoding mechanism of the feedback startegy, a KNN classifier was trained to recognize the uneven terrains. The outcome suggested that the subjects achieved such performance with a temporal dynamics of 45 ms. This work is a leap forward to assist lower-limb amputees to appreciate the floor conditions while walking, adapt their gait and promote a more confident use of their artificial limb.


Assuntos
Amputados , Membros Artificiais , Humanos , Retroalimentação , Tecnologia Háptica , Qualidade de Vida , Extremidade Inferior , , Caminhada , Marcha , Fenômenos Biomecânicos
11.
J Neuroeng Rehabil ; 20(1): 61, 2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149621

RESUMO

BACKGROUND: The aging of the population and the progressive increase of life expectancy in developed countries is leading to a high incidence of age-related cerebrovascular diseases, which affect people's motor and cognitive capabilities and might result in the loss of arm and hand functions. Such conditions have a detrimental impact on people's quality of life. Assistive robots have been developed to help people with motor or cognitive disabilities to perform activities of daily living (ADLs) independently. Most of the robotic systems for assisting on ADLs proposed in the state of the art are mainly external manipulators and exoskeletal devices. The main objective of this study is to compare the performance of an hybrid EEG/EOG interface to perform ADLs when the user is controlling an exoskeleton rather than using an external manipulator. METHODS: Ten impaired participants (5 males and 5 females, mean age 52 ± 16 years) were instructed to use both systems to perform a drinking task and a pouring task comprising multiple subtasks. For each device, two modes of operation were studied: synchronous mode (the user received a visual cue indicating the sub-tasks to be performed at each time) and asynchronous mode (the user started and finished each of the sub-tasks independently). Fluent control was assumed when the time for successful initializations ranged below 3 s and a reliable control in case it remained below 5 s. NASA-TLX questionnaire was used to evaluate the task workload. For the trials involving the use of the exoskeleton, a custom Likert-Scale questionnaire was used to evaluate the user's experience in terms of perceived comfort, safety, and reliability. RESULTS: All participants were able to control both systems fluently and reliably. However, results suggest better performances of the exoskeleton over the external manipulator (75% successful initializations remain below 3 s in case of the exoskeleton and bellow 5s in case of the external manipulator). CONCLUSIONS: Although the results of our study in terms of fluency and reliability of EEG control suggest better performances of the exoskeleton over the external manipulator, such results cannot be considered conclusive, due to the heterogeneity of the population under test and the relatively limited number of participants.


Assuntos
Atividades Cotidianas , Exoesqueleto Energizado , Masculino , Feminino , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Qualidade de Vida , Reprodutibilidade dos Testes , Encéfalo
12.
Artigo em Inglês | MEDLINE | ID: mdl-37018711

RESUMO

In the context of hand and finger rehabilitation, kinematic compatibility is key for the acceptability and clinical exploitation of robotic devices. Different kinematic chain solutions have been proposed in the state of the art, with different trade-offs between characteristics of kinematic compatibility, adaptability to different anthropometries, and the ability to compute relevant clinical information. This study presents the design of a novel kinematic chain for the mobilization of the metacarpophalangeal (MCP) joint of the long fingers and a mathematical model for the real-time computation of the joint angle and transferred torque. The proposed mechanism can self-align with the human joint without hindering force transfer or inducing parasitic torque. The chain has been designed for integration into an exoskeletal device aimed at rehabilitating traumatic-hand patients. The exoskeleton actuation unit has a series-elastic architecture for compliant human-robot interaction and has been assembled and preliminarily tested in experiments with eight human subjects. Performance has been investigated in terms of (i) accuracy of the MCP joint angle estimation through comparison with a video-based motion tracking system, (ii) residual MCP torque when the exoskeleton is controlled to provide null output impedance and (iii) torque-tracking performance. Results showed a root-mean-square error (RMSE) below 5 degrees in the estimated MCP angle. The estimated residual MCP torque resulted below 7 mNm. Torque tracking performance shows an RMSE lower than 8 mNm in following sinusoidal reference profiles. The results encourage further investigations of the device in a clinical scenario.

13.
Appl Ergon ; 106: 103877, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36095895

RESUMO

In the past few years, companies have started considering the adoption of upper-limb occupational exoskeletons as a solution to reduce the health and cost issues associated with work-related shoulder overuse injuries. Most of the previous research studies have evaluated the efficacy of these devices in laboratories by measuring the reduction in muscle exertion resulting from device use in stereotyped tasks and controlled conditions. However, to date, uncertainties exist about generalizing laboratory results to more realistic conditions of use. The current study aims to investigate the in-field efficacy (through electromyography and perceived exertion), usability, and acceptance of a commercial spring-loaded upper-limb exoskeleton in cleaning job activities. The operators were required to maintain prolonged overhead postures while holding and moving a pole equipped with tools for window and ceiling cleaning. Compared to the normal working condition, the exoskeleton significantly reduced the total shoulder muscle activity (∼17%), the activity of the anterior deltoid (∼26%), medial deltoid (∼28%), and upper trapezius (∼24%). With the exoskeleton, the operators perceived reduced global effort (∼17%) as well as a reduced local effort in the shoulder (∼18%), arm (∼22%), upper back (∼14%), and lower back (∼16%). The beneficial effect of the exoskeleton and its suitability in cleaning settings are corroborated by the acceptance and usability scores assigned by operators, which averaged ∼5.5 out of 7 points. To the authors' knowledge, this study is the first to present an experience of exoskeleton use in cleaning contexts. The outcomes of this research invite further studies to test occupational exoskeletons in various realistic applications to foster scientific-grounded ergonomic evaluations and encourage the informed adoption of the technology.


Assuntos
Exoesqueleto Energizado , Músculos Superficiais do Dorso , Humanos , Eletromiografia , Extremidade Superior/fisiologia , Ombro/fisiologia , Músculo Esquelético/fisiologia , Fenômenos Biomecânicos
14.
Wearable Technol ; 4: e18, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38487780

RESUMO

Passive ankle-foot prostheses are light-weighted and reliable, but they cannot generate net positive power, which is essential in restoring the natural gait pattern of amputees. Recent robotic prostheses addressed the problem by actively controlling the storage and release of energy generated during the stance phase through the mechanical deformation of elastic elements housed in the device. This study proposes an innovative low-power active prosthetic module that fits on off-the-shelf passive ankle-foot energy-storage-and-release (ESAR) prostheses. The module is placed parallel to the ESAR foot, actively augmenting the energy stored in the foot and controlling the energy return for an enhanced push-off. The parallel elastic actuation takes advantage of the amputee's natural loading action on the foot's elastic structure, retaining its deformation. The actuation unit is designed to additionally deform the foot and command the return of the total stored energy. The control strategy of the prosthesis adapts to changes in the user's cadence and loading conditions to return the energy at a desired stride phase. An early verification on two transtibial amputees during treadmill walking showed that the proposed mechanism could increase the subjects' dorsiflexion peak of 15.2% and 41.6% for subjects 1 and 2, respectively, and the cadence of about 2%. Moreover, an increase of 26% and 45% was observed in the energy return for subjects 1 and 2, respectively.

15.
Sci Rep ; 12(1): 19343, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369462

RESUMO

This study was designed to investigate the feasibility and the potential effects on walking performance of a short gait training with a novel impairment-specific hip assistance (iHA) through a bilateral active pelvis orthosis (APO) in patients with acquired brain injury (ABI). Fourteen subjects capable of independent gait and exhibiting mild-to-moderate gait deficits, due to an ABI, were enrolled. Subjects presenting deficit in hip flexion and/or extension were included and divided into two groups based on the presence (group A, n = 6) or absence (group B, n = 8) of knee hyperextension during stance phase of walking. Two iHA-based profiles were developed for the groups. The protocol included two overground gait training sessions using APO, and two evaluation sessions, pre and post training. Primary outcomes were pre vs. post-training walking distance and steady-state speed in the 6-min walking test. Secondary outcomes were self-selected speed, joint kinematics and kinetics, gait symmetry and forward propulsion, assessed through 3D gait analysis. Following the training, study participants significantly increased the walked distance and average steady-state speed in the 6-min walking tests, both when walking with and without the APO. The increased walked distance surpassed the minimal clinically important difference for groups A and B, (respectively, 42 and 57 m > 34 m). In group A, five out of six subjects had decreased knee hyperextension at the post-training session (on average the peak of the knee extension angle was reduced by 36%). Knee flexion during swing phase increased, by 16% and 31%, for A and B groups respectively. Two-day gait training with APO providing iHA was effective and safe in improving walking performance and knee kinematics in ABI survivors. These preliminary findings suggest that this strategy may be viable for subject-specific post-ABI gait rehabilitation.


Assuntos
Lesões Encefálicas , Exoesqueleto Energizado , Humanos , Estudos de Viabilidade , Marcha , Caminhada , Fenômenos Biomecânicos
16.
Sensors (Basel) ; 22(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35270877

RESUMO

Timely and reliable identification of control phases is functional to the control of a powered robotic lower-limb prosthesis. This study presents a commercial energy-store-and-release foot prosthesis instrumented with a multimodal sensory system comprising optoelectronic pressure sensors (PS) and IMU. The performance was verified with eight healthy participants, comparing signals processed by two different algorithms, based on PS and IMU, respectively, for real-time detection of heel strike (HS) and toe-off (TO) events and an estimate of relevant biomechanical variables such as vertical ground reaction force (vGRF) and center of pressure along the sagittal axis (CoPy). The performance of both algorithms was benchmarked against a force platform and a marker-based stereophotogrammetric motion capture system. HS and TO were estimated with a time error lower than 0.100 s for both the algorithms, sufficient for the control of a lower-limb robotic prosthesis. Finally, the CoPy computed from the PS showed a Pearson correlation coefficient of 0.97 (0.02) with the same variable computed through the force platform.


Assuntos
Procedimentos Cirúrgicos Robóticos , Fenômenos Biomecânicos , , Marcha , Humanos , Transdutores de Pressão
17.
Appl Ergon ; 101: 103679, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35066399

RESUMO

This case-series study aims to investigate the effects of a passive shoulder support exoskeleton on experienced workers during their regular work shifts in an enclosures production site. Experimental activities included three sessions, two of which were conducted in-field (namely, at two workstations of the painting line, where panels were mounted and dismounted from the line; each session involved three participants), and one session was carried out in a realistic simulated environment (namely, the workstations were recreated in a laboratory; this session involved four participants). The effect of the exoskeleton was evaluated through electromyographic activity and perceived effort. After in-field sessions, device usability and user acceptance were also assessed. Data were reported individually for each participant. Results showed that the use of the exoskeleton reduced the total shoulder muscular activity compared to normal working conditions, in all subjects and experimental sessions. Similarly, the use of the exoskeleton resulted in reductions of the perceived effort in the shoulder, arm, and lower back. Overall, participants indicated high usability and acceptance of the device. This case series invites larger validation studies, also in diverse operational contexts.


Assuntos
Exoesqueleto Energizado , Fenômenos Biomecânicos , Humanos , Ombro , Extremidade Superior
18.
Appl Ergon ; 98: 103582, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34600307

RESUMO

OBJECTIVES: To provide an overview of protocols assessing the effect of occupational exoskeletons on users and to formulate recommendations towards a literature-based assessment framework to benchmark the effect of occupational exoskeletons on the user. METHODS: PubMed (MEDLINE), Web of Science database and Scopus were searched (March 2, 2021). Studies were included if they investigated the effect of one or more occupational exoskeletons on the user. RESULTS: In total, 139 eligible studies were identified, encompassing 33, 25 and 18 unique back, shoulder and other exoskeletons, respectively. Device validation was most frequently conducted using controlled tasks while collecting muscle activity and biomechanical data. As the exoskeleton concept matures, tasks became more applied and the experimental design more representative. With that change towards realistic testing environments came a trade-off with experimental control, and user experience data became more valuable. DISCUSSION: This evidence mapping systematic review reveals that the assessment of occupational exoskeletons is a dynamic process, and provides literature-based assessment recommendations. The homogeneity and repeatability of future exoskeleton assessment experiments will increase following these recommendations. The current review recognises the value of variability in evaluation protocols in order to obtain an overall overview of the effect of exoskeletons on the users, but the presented framework strives to facilitate benchmarking the effect of occupational exoskeletons on the users across this variety of assessment protocols.


Assuntos
Benchmarking , Exoesqueleto Energizado , Humanos , Ombro
19.
Wearable Technol ; 3: e11, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38486906

RESUMO

Continuous gait phase plays an important role in robotic prosthesis control. In this paper, we have conducted the offline adaptive estimation (at different speeds and on different ramps) of continuous gait phase of robotic transtibial prosthesis based on the adaptive oscillators. We have used the capacitive sensing method to record the deformation of the muscles. Two transtibial amputees joined in this study. Based on the strain signals of the prosthetic foot and the capacitive signals of the residual limb, the maximum and minimum of estimation errors are 0.80 rad and 0.054 rad, respectively, and their corresponding ratios in one gait cycle are 1.27% and 0.86%, respectively. This paper proposes an effective method to estimate the continuous gait phase based on the capacitive signals of the residual muscles, which provides a basis for the continuous control of robotic transtibial prosthesis.

20.
J Neuroeng Rehabil ; 18(1): 168, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34863213

RESUMO

BACKGROUND: Transfemoral amputees experience a complex host of physical, psychological, and social challenges, compounded by the functional limitations of current transfemoral prostheses. However, the specific relationships between human factors and prosthesis design and performance characteristics have not yet been adequately investigated. The present study aims to address this knowledge gap. METHODS: A comprehensive single-cohort survey of 114 unilateral transfemoral amputees addressed a broad range of demographic and clinical characteristics, functional autonomy, satisfaction and attitudes towards their current prostheses, and design priorities for an ideal transfemoral prosthesis, including the possibility of active assistance from a robotic knee unit. The survey was custom-developed based on several standard questionnaires used to assess motor abilities and autonomy in activities of daily living, prosthesis satisfaction, and quality of life in lower-limb amputees. Survey data were analyzed to compare the experience (including autonomy and satisfaction) and design priorities of users of transfemoral prostheses with versus without microprocessor-controlled knee units (MPKs and NMPKs, respectively), with a subsequent analyses of cross-category correlation, principal component analysis (PCA), cost-sensitivity segmentation, and unsupervised K-means clustering applied within the most cost-sensitive participants, to identify functional groupings of users with respect to their design priorities. RESULTS: The cohort featured predominantly younger (< 50 years) traumatic male amputees with respect to the general transfemoral amputee population, with pronounced differences in age distribution and amputation etiology (traumatic vs. non-traumatic) between MPK and NMPK groups. These differences were further reflected in user experience, with MPK users reporting significantly greater overall functional autonomy, satisfaction, and sense of prosthesis ownership than those with NMPKs, in conjunction with a decreased incidence of instability and falls. Across all participants, the leading functional priorities for an ideal transfemoral prosthesis were overall stability, adaptability to variable walking velocity, and lifestyle-related functionality, while the highest-prioritized general characteristics were reliability, comfort, and weight, with highly variable prioritization of cost according to reimbursement status. PCA and user clustering analyses revealed the possibility for functionally relevant groupings of prosthesis features and users, based on their differential prioritization of these features-with implications towards prosthesis design tradeoffs. CONCLUSIONS: This study's findings support the understanding that when appropriately prescribed according to patient characteristics and needs in the context of a proactive rehabilitation program, advanced transfemoral prostheses promote patient mobility, autonomy, and overall health. Survey data indicate overall stability, modularity, and versatility as key design priorities for the continued development of transfemoral prosthesis technology. Finally, observed associations between prosthesis type, user experience, and attitudes concerning prosthesis ownership suggest both that prosthesis characteristics influence device acceptance and functional outcomes, and that psychosocial factors should be specifically and proactively addressed during the rehabilitation process.


Assuntos
Amputados , Membros Artificiais , Procedimentos Cirúrgicos Robóticos , Atividades Cotidianas , Amputação Cirúrgica , Amputados/reabilitação , Humanos , Masculino , Desenho de Prótese , Qualidade de Vida , Reprodutibilidade dos Testes , Inquéritos e Questionários , Design Centrado no Usuário , Caminhada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA