Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Sci Signal ; 16(794): eadg4193, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463244

RESUMO

The transcription factor MYC regulates cell proliferation, transformation, and survival in response to growth factor signaling that is mediated in part by the kinase activity of ERK2. Because ERK2 can also bind to DNA to modify gene expression, we investigated whether it more directly regulates MYC transcription. We identified ERK2 binding sites in the MYC promoter and detected ERK2 at the promoter in various serum-stimulated cell types. Expression of nuclear-localized ERK2 constructs in serum-starved cells revealed that ERK2 in the nucleus-regardless of its kinase activity-increased MYC mRNA expression and MYC protein abundance. ERK2 bound to the promoter through its amino-terminal insert domain and to the cyclin-dependent kinase CDK9 (which activates RNA polymerase II) through its carboxyl-terminal conserved docking domain. Both interactions were essential for ERK2-induced MYC expression, and depleting ERK impaired CDK9 occupancy and RNA polymerase II progression at the MYC promoter. Artificially tethering CDK9 to the MYC promoter by fusing it to the ERK2 insert domain was sufficient to stimulate MYC expression in serum-starved cells. Our findings demonstrate a role for ERK2 at the MYC promoter acting as a kinase-independent anchor for the recruitment of CDK9 to promote MYC expression.


Assuntos
RNA Polimerase II , Fatores de Transcrição , RNA Polimerase II/genética , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Fosforilação , Fatores de Transcrição/metabolismo , Quinases Ciclina-Dependentes/genética , Regiões Promotoras Genéticas , Transcrição Gênica
2.
Sci Adv ; 9(7): eadd7969, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36791195

RESUMO

RAS-ERK (extracellular signal-regulated kinase) pathway signals are modulated by scaffold proteins that assemble the components of different kinase tiers into a sequential phosphorylation cascade. In the prevailing model scaffold proteins function as isolated entities, where the flux of phosphorylation events progresses downstream linearly, to achieve ERK phosphorylation. We show that different types of scaffold proteins, specifically KSR1 (kinase suppressor of Ras 1) and IQGAP1 (IQ motif-containing guanosine triphosphatase activating protein 1), can bind to each other, forming a complex whereby phosphorylation reactions occur across both species. MEK (mitogen-activated protein kinase kinase) bound to IQGAP1 can phosphorylate ERK docked at KSR1, a process that we have named "trans-phosphorylation." We also reveal that ERK trans-phosphorylation participates in KSR1-regulated adipogenesis, and it also underlies the modest cytotoxicity exhibited by KSR-directed inhibitors. Overall, we identify interactions between scaffold proteins and trans-phosphorylation as an additional level of regulation in the ERK cascade, with broad implications in signaling and the design of scaffold protein-aimed therapeutics.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Sistema de Sinalização das MAP Quinases , Fosforilação , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Transdução de Sinais
3.
Biomolecules ; 12(11)2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36358912

RESUMO

Metastatic melanoma is a highly immunogenic tumor with very poor survival rates due to immune system escape-mechanisms. Immune checkpoint inhibitors (ICIs) targeting the cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and the programmed death-1 (PD1) receptors, are being used to impede immune evasion. This immunotherapy entails an increment in the overall survival rates. However, melanoma cells respond with evasive molecular mechanisms. ERK cascade inhibitors are also used in metastatic melanoma treatment, with the RAF activity blockade being the main therapeutic approach for such purpose, and in combination with MEK inhibitors improves many parameters of clinical efficacy. Despite their efficacy in inhibiting ERK signaling, the rewiring of the melanoma cell-signaling results in disease relapse, constituting the reinstatement of ERK activation, which is a common cause of some resistance mechanisms. Recent studies revealed that the combination of RAS-ERK pathway inhibitors and ICI therapy present promising advantages for metastatic melanoma treatment. Here, we present a recompilation of the combined therapies clinically evaluated in patients.


Assuntos
Antineoplásicos , Melanoma , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Sistema de Sinalização das MAP Quinases , Melanoma/patologia , Imunoterapia/métodos , Antineoplásicos/farmacologia
4.
Cell Mol Life Sci ; 79(9): 504, 2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36056964

RESUMO

BACKGROUND: RAS-to-ERK signaling is crucial for the onset and progression of advanced thyroid carcinoma, and blocking ERK dimerization provides a therapeutic benefit in several human carcinomas. Here we analyzed the effects of DEL-22379, a relatively specific ERK dimerization inhibitor, on the activation of the RAS-to-ERK signaling cascade and on tumor-related processes in vitro and in vivo. METHODS: We used a panel of four human anaplastic thyroid carcinoma (ATC) cell lines harboring BRAF or RAS mutations to analyze ERK dynamics and tumor-specific characteristics. We also assessed the impact of DEL-22379 on the transcriptional landscape of ATC cell lines using RNA-sequencing and evaluated its therapeutic efficacy in an orthotopic mouse model of ATC. RESULTS: DEL-22379 impaired upstream ERK activation in BRAF- but not RAS-mutant cells. Cell viability and metastasis-related processes were attenuated by DEL-22379 treatment, but mostly in BRAF-mutant cells, whereas in vivo tumor growth and dissemination were strongly reduced for BRAF-mutant cells and mildly reduced for RAS-mutant cells. Transcriptomics analyses indicated that DEL-22379 modulated the transcriptional landscape of BRAF- and RAS-mutant cells in opposite directions. CONCLUSIONS: Our findings establish that BRAF- and RAS-mutant thyroid cells respond differentially to DEL-22379, which cannot be explained by the previously described mechanism of action of the inhibitor. Nonetheless, DEL-22379 demonstrated significant anti-tumor effects against BRAF-mutant cells in vivo with an apparent lack of toxicity, making it an interesting candidate for the development of combinatorial treatments. Our data underscore the differences elicited by the specific driver mutation for thyroid cancer onset and progression, which should be considered for experimental and clinical approaches.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Animais , Linhagem Celular Tumoral , Dimerização , Humanos , Camundongos , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Multimerização Proteica , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Carcinoma Anaplásico da Tireoide/genética , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética
5.
Oncogene ; 41(24): 3341-3354, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35534539

RESUMO

It is known that Rho GTPases control different aspects of the biology of skin stem cells (SSCs). However, little information is available on the role of their upstream regulators under normal and tumorigenic conditions in this process. To address this issue, we have used here mouse models in which the activity of guanosine nucleotide exchange factors of the Vav subfamily has been manipulated using both gain- and loss-of-function strategies. These experiments indicate that Vav2 and Vav3 regulate the number, functional status, and responsiveness of hair follicle bulge stem cells. This is linked to gene expression programs related to the reinforcement of the identity and the quiescent state of normal SSCs. By contrast, in the case of cancer stem cells, they promote transcriptomal programs associated with the identity, activation state, and cytoskeletal remodeling. These results underscore the role of these Rho exchange factors in the regulation of normal and tumor epidermal stem cells.


Assuntos
Proteínas Proto-Oncogênicas c-vav , Pele , Células-Tronco , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Células Epidérmicas/citologia , Células Epidérmicas/metabolismo , Epiderme/metabolismo , Folículo Piloso/citologia , Folículo Piloso/metabolismo , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas c-vav/genética , Proteínas Proto-Oncogênicas c-vav/metabolismo , Pele/citologia , Pele/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
7.
Genes (Basel) ; 12(10)2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34680951

RESUMO

Signals conveyed through the RAS-ERK pathway constitute a pivotal regulatory element in cancer-related cellular processes. Recently, RAS dimerization has been proposed as a key step in the relay of RAS signals, critically contributing to RAF activation. RAS clustering at plasma membrane microdomains and endomembranes facilitates RAS dimerization in response to stimulation, promoting RAF dimerization and subsequent activation. Remarkably, inhibiting RAS dimerization forestalls tumorigenesis in cellular and animal models. Thus, the pharmacological disruption of RAS dimers has emerged as an additional target for cancer researchers in the quest for a means to curtail aberrant RAS activity.


Assuntos
Carcinogênese/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Multimerização Proteica , Proteínas ras/metabolismo , Animais , Humanos , Transdução de Sinais
8.
Sci Rep ; 11(1): 5496, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750814

RESUMO

Metallothionein-3 has poorly characterized functions in neuroblastoma. Cisplatin-based chemotherapy is a major regimen to treat neuroblastoma, but its clinical efficacy is limited by chemoresistance. We investigated the impact of human metallothionein-3 (hMT3) up-regulation in neuroblastoma cells and the mechanisms underlying the cisplatin-resistance. We confirmed the cisplatin-metallothionein complex formation using mass spectrometry. Overexpression of hMT3 decreased the sensitivity of neuroblastoma UKF-NB-4 cells to cisplatin. We report, for the first time, cisplatin-sensitive human UKF-NB-4 cells remodelled into cisplatin-resistant cells via high and constitutive hMT3 expression in an in vivo model using chick chorioallantoic membrane assay. Comparative proteomic analysis demonstrated that several biological pathways related to apoptosis, transport, proteasome, and cellular stress were involved in cisplatin-resistance in hMT3 overexpressing UKF-NB-4 cells. Overall, our data confirmed that up-regulation of hMT3 positively correlated with increased cisplatin-chemoresistance in neuroblastoma, and a high level of hMT3 could be one of the causes of frequent tumour relapses.


Assuntos
Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Metalotioneína 3/biossíntese , Proteínas de Neoplasias/biossíntese , Animais , Linhagem Celular Tumoral , Embrião de Galinha , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Metalotioneína 3/genética , Proteínas de Neoplasias/genética
9.
Oncogene ; 40(16): 2923-2935, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33742126

RESUMO

The survival rate in lung cancer remains stubbornly low and there is an urgent need for the identification of new therapeutic targets. In the last decade, several members of the SWI/SNF chromatin remodeling complexes have been described altered in different tumor types. Nevertheless, the precise mechanisms of their impact on cancer progression, as well as the application of this knowledge to cancer patient management are largely unknown. In this study, we performed targeted sequencing of a cohort of lung cancer patients on genes involved in chromatin structure. In addition, we studied at the protein level the expression of these genes in cancer samples and performed functional experiments to identify the molecular mechanisms linking alterations of chromatin remodeling genes and tumor development. Remarkably, we found that 20% of lung cancer patients show ARID2 protein loss, partially explained by the presence of ARID2 mutations. In addition, we showed that ARID2 deficiency provokes profound chromatin structural changes altering cell transcriptional programs, which bolsters the proliferative and metastatic potential of the cells both in vitro and in vivo. Moreover, we demonstrated that ARID2 deficiency impairs DNA repair, enhancing the sensitivity of the cells to DNA-damaging agents. Our findings support that ARID2 is a bona fide tumor suppressor gene in lung cancer that may be exploited therapeutically.


Assuntos
Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Fatores de Transcrição/deficiência , Células A549 , Animais , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Taxa de Sobrevida , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Mol Biol Cell ; 31(25): 2768-2778, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33026942

RESUMO

RHO GTPases are key regulators of the cytoskeletal architecture, which impact a broad range of biological processes in malignant cells including motility, invasion, and metastasis, thereby affecting tumor progression. One of the constraints during cell migration is the diameter of the pores through which cells pass. In this respect, the size and shape of the nucleus pose a major limitation. Therefore, enhanced nuclear plasticity can promote cell migration. Nuclear morphology is determined in part through the cytoskeleton, which connects to the nucleoskeleton through the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex. Here, we unravel the role of RAC1 as an orchestrator of nuclear morphology in melanoma cells. We demonstrate that activated RAC1 promotes nuclear alterations through its effector PAK1 and the tubulin cytoskeleton, thereby enhancing migration and intravasation of melanoma cells. Disruption of the LINC complex prevented RAC1-induced nuclear alterations and the invasive properties of melanoma cells. Thus, RAC1 induces nuclear morphology alterations through microtubules and the LINC complex to promote an invasive phenotype in melanoma cells.


Assuntos
Núcleo Celular/metabolismo , Melanoma/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Forma do Núcleo Celular/fisiologia , Embrião de Galinha , Citoesqueleto/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Microtúbulos/metabolismo , Invasividade Neoplásica/genética , Matriz Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo
12.
Cancers (Basel) ; 12(9)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927904

RESUMO

RAS mutations are the second most common genetic alteration in thyroid tumors. However, the extent to which they are associated with the most aggressive phenotypes is still controversial. Regarding their malignancy, the majority of RAS mutant tumors are classified as undetermined, which complicates their clinical management and can lead to undesired under- or overtreatment. Using the chick embryo spontaneous metastasis model, we herein demonstrate that the aggressiveness of HRAS-transformed thyroid cells, as determined by the ability to extravasate and metastasize at distant organs, is orchestrated by HRAS subcellular localization. Remarkably, aggressiveness inversely correlates with tumor size. In this respect, we also show that RAS site-specific capacity to regulate tumor growth and dissemination is dependent on VEGF-B secretion. Furthermore, we have identified the acyl protein thioesterase APT-1 as a determinant of thyroid tumor growth versus dissemination. We show that alterations in APT-1 expression levels can dramatically affect the behavior of thyroid tumors, based on its role as a regulator of HRAS sublocalization at distinct plasma membrane microdomains. In agreement, APT-1 emerges in thyroid cancer clinical samples as a prognostic factor. As such, APT-1 levels could serve as a biomarker that could help in the stratification of HRAS mutant thyroid tumors based on their aggressiveness.

13.
Small GTPases ; 11(5): 371-383, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-29172991

RESUMO

Ras GTPases convey signals from different types of membranes. At these locations, different Ras isoforms, interactors and regulators generate different biochemical signals and biological outputs. The study of Ras localisation-specific signal transduction networks has been hampered by our inability to specifically activate each of these Ras pools. Here, we describe a new set of site-specific tethered exchange factors, engineered by fusing the RasGRF1 CDC25 domain to sub-localisation-defining cues, whereby Ras pools at specific locations can be precisely activated. We show that the CDC25 domain has a high specificity for activating HRas but not NRas and KRas. This unexpected finding means that our constructs mainly activate endogenous HRas. Hence, their use enabled us to identify distinct pathways regulated by HRas in endomembranes and plasma membrane microdomains. Importantly, these new constructs unveil different patterns of HRas activity specified by their subcellular localisation. Overall, the targeted GEFs described herein constitute ideal tools for dissecting spatially-defined HRas biochemical and biological functions.


Assuntos
Engenharia de Proteínas , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , ras-GRF1/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Chlorocebus aethiops , Humanos , Camundongos , Transdução de Sinais
14.
Endocr Relat Cancer ; 26(6): R319-R344, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30978703

RESUMO

Thyroid cancer is mostly an ERK-driven carcinoma, as up to 70% of thyroid carcinomas are caused by mutations that activate the RAS/ERK mitogenic signaling pathway. The incidence of thyroid cancer has been steadily increasing for the last four decades; yet, there is still no effective treatment for advanced thyroid carcinomas. Current research efforts are focused on impairing ERK signaling with small-molecule inhibitors, mainly at the level of BRAF and MEK. However, despite initial promising results in animal models, the clinical success of these inhibitors has been limited by the emergence of tumor resistance and relapse. The RAS/ERK pathway is an extremely complex signaling cascade with multiple points of control, offering many potential therapeutic targets: from the modulatory proteins regulating the activation state of RAS proteins to the scaffolding proteins of the pathway that provide spatial specificity to the signals, and finally, the negative feedbacks and phosphatases responsible for inactivating the pathway. The aim of this review is to give an overview of the biology of RAS/ERK regulators in human cancer highlighting relevant information on thyroid cancer and future areas of research.


Assuntos
Antineoplásicos/uso terapêutico , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Terapia de Alvo Molecular , Neoplasias da Glândula Tireoide/tratamento farmacológico , Proteínas ras/antagonistas & inibidores , Animais , Humanos , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia
15.
Cell Rep ; 26(11): 3100-3115.e7, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30865897

RESUMO

Modern omics technologies allow us to obtain global information on different types of biological networks. However, integrating these different types of analyses into a coherent framework for a comprehensive biological interpretation remains challenging. Here, we present a conceptual framework that integrates protein interaction, phosphoproteomics, and transcriptomics data. Applying this method to analyze HRAS signaling from different subcellular compartments shows that spatially defined networks contribute specific functions to HRAS signaling. Changes in HRAS protein interactions at different sites lead to different kinase activation patterns that differentially regulate gene transcription. HRAS-mediated signaling is the strongest from the cell membrane, but it regulates the largest number of genes from the endoplasmic reticulum. The integrated networks provide a topologically and functionally resolved view of HRAS signaling. They reveal distinct HRAS functions including the control of cell migration from the endoplasmic reticulum and TP53-dependent cell survival when signaling from the Golgi apparatus.


Assuntos
Compartimento Celular , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Apoptose , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Mapas de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas p21(ras)/genética , Transcriptoma , Proteína Supressora de Tumor p53
17.
J Steroid Biochem Mol Biol ; 185: 1-6, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29981368

RESUMO

Colorectal cancer (CRC) is the neoplasia that is most frequently associated with vitamin D deficiency in epidemiological and observational studies in terms of incidence and mortality. Many mechanistic studies show that the active vitamin D metabolite (1α,25-dihydroxyvitamin D3 or calcitriol) inhibits proliferation and promotes epithelial differentiation of human colon carcinoma cell lines that express vitamin D receptor (VDR) via the regulation of a high number of genes. A key action underlining this effect is the multilevel inhibition of the Wnt/ß-catenin signaling pathway, whose abnormal activation in colon epithelial cells initiates and promotes CRC. Recently, our group has shown that calcitriol modulates gene expression and inhibits protumoral properties of patient-derived colon cancer-associated fibroblasts (CAFs). Accordingly, high VDR expression in tumor stromal fibroblasts is associated with longer survival of CRC patients. Moreover, many types of immune cells express VDR and are regulated by calcitriol, which probably contributes to its action against CRC. Given the role attributed to the intestinal microbiota in CRC and the finding that it is altered by vitamin D deficiency, an indirect antitumoral effect of calcitriol is also plausible at this level. In summary, calcitriol has an array of potential protective effects against CRC by acting on carcinoma cells, CAFs, immune cells and probably also the gut microbiota.


Assuntos
Anticarcinógenos/farmacologia , Calcitriol/farmacologia , Neoplasias Colorretais/prevenção & controle , Microbioma Gastrointestinal/efeitos dos fármacos , Receptores de Calcitriol/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/patologia , Humanos , Proteínas Wnt/antagonistas & inibidores , Via de Sinalização Wnt/fisiologia , beta Catenina/antagonistas & inibidores
18.
Sci Signal ; 11(554)2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30377222

RESUMO

Data accumulated over more than three decades demonstrate that the assembly of macrocomplexes, mainly of dimers, is widespread among the members of the different tiers that constitute the RAS-ERK pathway. In this issue of Science Signaling, Yuan et al. report that MEK1 homodimerization is necessary for signal transduction through the RAF-ERK pathway and that cancer-related MEK1 mutations confer enhanced dimerization and resistance to MEK inhibitors. These findings endorse interference with RAS-ERK pathway-component dimerization as a potential therapeutic strategy in cancer patients.


Assuntos
Transformação Celular Neoplásica , Sistema de Sinalização das MAP Quinases , Dimerização , Humanos , Mutação , Transdução de Sinais
19.
Nat Commun ; 9(1): 3595, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185827

RESUMO

RAS GTPases are frequently mutated in human cancer. H- and NRAS isoforms are distributed over both plasma-membrane and endomembranes, including the Golgi complex, but how this organizational context contributes to cellular transformation is unknown. Here we show that RAS at the Golgi is selectively activated by apoptogenic stimuli and antagonizes cell survival by suppressing ERK activity through the induction of PTPRκ, which targets CRAF for dephosphorylation. Consistently, in contrast to what occurs at the plasma-membrane, RAS at the Golgi cannot induce melanoma in zebrafish. Inactivation of PTPRκ, which occurs frequently in human melanoma, often coincident with TP53 inactivation, accelerates RAS-ERK pathway-driven melanomagenesis in zebrafish. Likewise, tp53 disruption in zebrafish facilitates oncogenesis driven by RAS from the Golgi complex. Thus, RAS oncogenic potential is strictly dependent on its sublocalization, with Golgi complex-located RAS antagonizing tumor development.


Assuntos
Transformação Celular Neoplásica/patologia , Complexo de Golgi/metabolismo , Melanoma/patologia , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Proteínas ras/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Células NIH 3T3 , RNA Interferente Pequeno/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA