Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microb Ecol ; 86(2): 1035-1049, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36538089

RESUMO

Arbuscular mycorrhizal fungi (AMF) deliver potentially significant services in sustainable agricultural ecosystems, yet we still lack evidence showing how AMF abundance and/or community composition can benefit crops. In this study, we manipulated AMF communities in grapevine rootstock and measured plant growth and physiological responses. Glasshouse experiments were set up to determine the interaction between rootstock variety and different AMF communities, using AMF communities originating under their own (i.e., "home") soil and other rootstocks' (i.e., "away") soil. The results revealed that specific AMF communities had differential effects on grapevine rootstock growth and nutrient uptake. It was demonstrated that a rootstock generally performed better in the presence of its own AMF community. This study also showed that AMF spore diversity and the relative abundance of certain species is an important factor as, when present in equal abundance, competition between species was indicated to occur, resulting in a reduction in the positive growth outcomes. Moreover, there was a significant difference between the communities with some AMF communities increasing plant growth and nutrient uptake compared with others. The outcomes also demonstrated that some AMF communities indirectly influenced the chlorophyll content in grapevine leaves through the increase of specific nutrients such as K, Mn, and Zn. The findings also indicated that some AMF species may deliver particular benefits to grapevine plants. This work has provided an improved understanding of community level AMF-grapevine interaction and delivered an increased knowledge of the ecosystem services they provide which will benefit the wine growers and the viticulture industry.


Assuntos
Micobioma , Micorrizas , Ecossistema , Solo , Produtos Agrícolas , Nutrientes , Microbiologia do Solo , Raízes de Plantas/microbiologia
2.
Funct Plant Biol ; 48(9): 889-904, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34366001

RESUMO

Using pea as our model crop, we sought to understand the regulatory control over the import of sugars and amino acids into the developing seeds and its importance for seed yield and quality. Transgenic peas simultaneously overexpressing a sucrose transporter and an amino acid transporter were developed. Pod walls, seed coats, and cotyledons were analysed separately, as well as leaves subtending developing pods. Sucrose, starch, protein, free amino acids, and endogenous cytokinins were measured during development. Temporal gene expression analyses (RT-qPCR) of amino acid (AAP), sucrose (SUT), and SWEET transporter family members, and those from cell wall invertase, cytokinin biosynthetic (IPT) and degradation (CKX) gene families indicated a strong effect of the transgenes on gene expression. In seed coats of the double transgenics, increased content and prolonged presence of cytokinin was particularly noticeable. The transgenes effectively promoted transition of young sink leaves into source leaves. We suggest the increased flux of sucrose and amino acids from source to sink, along with increased interaction between cytokinin and cell wall invertase in developing seed coats led to enhanced sink activity, resulting in higher cotyledon sucrose at process pea harvest, and increased seed number and protein content at maturity.


Assuntos
Citocininas , Pisum sativum , Sistemas de Transporte de Aminoácidos , Pisum sativum/genética , Sementes/genética , Sacarose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA