Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Microorganisms ; 12(10)2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39458284

RESUMO

The artificial solar saltworks fields of Hon Khoi are important industrial and biodiversity resources in southern Vietnam. Most hypersaline environments in this area are characterized by saturated salinity, nearly neutral pH, intense ultraviolet radiation, elevated temperatures and fast desiccation processes. However, the extremely halophilic prokaryotic communities associated with these stressful environments remain uninvestigated. To fill this gap, a metabarcoding approach was conducted to characterize these communities by comparing them with solar salterns in northern Vietnam as well as with the Italian salterns of Motya and Trapani. Sequencing analyses revealed that the multiple reuses of crystallization ponds apparently create significant perturbations and structural instability in prokaryotic consortia. However, some interesting features were noticed when we examined the diversity of ultra-small prokaryotes belonging to Patescibacteria and DPANN Archaea. Surprisingly, we found at least five deeply branched clades, two from Patescibacteria and three from DPANN Archaea, which seem to be quite specific to the Hon Khoi saltworks field ecosystem and can be considered as a part of biogeographical connotation. Further studies are needed to characterize these uncultivated taxa, to isolate and cultivate them, which will allow us to elucidate their ecological role in these hypersaline habitats and to explore their biotechnological and biomedical potential.

2.
Chem Sci ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39328195

RESUMO

Cold environments are predominant over the Earth and are inhabited by bacteria able to cope with a series of simultaneous environmental pressures. Gram-negative species of the Pseudomonas genus are the predominant ones isolated from cold habitats, making them an excellent model for studying the mechanisms of bacterial adaptation to the most extreme habitats on our planet. Here we focused on the lipopolysaccharide (LPS) structure and the outer membrane dynamics of Pseudomonas sp. EW#7, a strain isolated from Enigma Lake in Antarctica where, among other extreme characteristics, water temperature can reach 0.4 °C. We show that near-zero growth temperature mostly affects the LPS lipid A component. An uncommon tendency of decreasing lipid A secondary hydroxylation while increasing its phosphorylation degree was observed. This resulted in a faster lateral diffusion of lipid chains in the membrane and therefore in an enhancement of its fluctuations that guarantee membrane integrity and flexibility.

3.
Environ Microbiol Rep ; 16(2): e13258, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38589217

RESUMO

DNA methylation serves a variety of functions across all life domains. In this study, we investigated archaeal methylomics within a tripartite xylanolytic halophilic consortium. This consortium includes Haloferax lucertense SVX82, Halorhabdus sp. SVX81, and an ectosymbiotic Candidatus Nanohalococcus occultus SVXNc, a nano-sized archaeon from the DPANN superphylum. We utilized PacBio SMRT and Illumina cDNA sequencing to analyse samples from consortia of different compositions for methylomics and transcriptomics. Endogenous cTAG methylation, typical of Haloferax, was accompanied in this strain by methylation at four other motifs, including GDGcHC methylation, which is specific to the ectosymbiont. Our analysis of the distribution of methylated and unmethylated motifs suggests that autochthonous cTAG methylation may influence gene regulation. The frequency of GRAGAaG methylation increased in highly expressed genes, while CcTTG and GTCGaGG methylation could be linked to restriction-modification (RM) activity. Generally, the RM activity might have been reduced during the evolution of this archaeon to balance the protection of cells from intruders, the reduction of DNA damage due to self-restriction in stressful environments, and the benefits of DNA exchange under extreme conditions. Our methylomics, transcriptomics and complementary electron cryotomography (cryo-ET) data suggest that the nanohaloarchaeon exports its methyltransferase to methylate the Haloferax genome, unveiling a new aspect of the interaction between the symbiont and its host.


Assuntos
Archaea , Metilação de DNA , Archaea/genética , Perfilação da Expressão Gênica , Expressão Gênica , Metiltransferases/genética , DNA Arqueal/genética
4.
Front Microbiol ; 14: 1182464, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323909

RESUMO

Extremely halophilic representatives of the phylum Candidatus Nanohaloarchaeota (members of the DPANN superphyla) are obligately associated with extremely halophilic archaea of the phylum Halobacteriota (according to the GTDB taxonomy). Using culture-independent molecular techniques, their presence in various hypersaline ecosystems around the world has been confirmed over the past decade. However, the vast majority of nanohaloarchaea remain uncultivated, and thus their metabolic capabilities and ecophysiology are currently poorly understood. Using the (meta)genomic, transcriptomic, and DNA methylome platforms, the metabolism and functional prediction of the ecophysiology of two novel extremely halophilic symbiotic nanohaloarchaea (Ca. Nanohalococcus occultus and Ca. Nanohalovita haloferacivicina) stably cultivated in the laboratory as members of a xylose-degrading binary culture with a haloarchaeal host, Haloferax lucentense, was determined. Like all known DPANN superphylum nanoorganisms, these new sugar-fermenting nanohaloarchaea lack many fundamental biosynthetic repertoires, making them exclusively dependent on their respective host for survival. In addition, given the cultivability of the new nanohaloarchaea, we managed to discover many unique features in these new organisms that have never been observed in nano-sized archaea both within the phylum Ca. Nanohaloarchaeota and the entire superphylum DPANN. This includes the analysis of the expression of organism-specific non-coding regulatory (nc)RNAs (with an elucidation of their 2D-secondary structures) as well as profiling of DNA methylation. While some ncRNA molecules have been predicted with high confidence as RNAs of an archaeal signal recognition particle involved in delaying protein translation, others resemble the structure of ribosome-associated ncRNAs, although none belong to any known family. Moreover, the new nanohaloarchaea have very complex cellular defense mechanisms. In addition to the defense mechanism provided by the type II restriction-modification system, consisting of Dcm-like DNA methyltransferase and Mrr restriction endonuclease, Ca. Nanohalococcus encodes an active type I-D CRISPR/Cas system, containing 77 spacers divided into two loci. Despite their diminutive genomes and as part of their host interaction mechanism, the genomes of new nanohaloarchaea do encode giant surface proteins, and one of them (9,409 amino acids long) is the largest protein of any sequenced nanohaloarchaea and the largest protein ever discovered in cultivated archaea.

5.
Microb Biotechnol ; 16(9): 1803-1822, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37317055

RESUMO

Climate change, desertification, salinisation of soils and the changing hydrology of the Earth are creating or modifying microbial habitats at all scales including the oceans, saline groundwaters and brine lakes. In environments that are saline or hypersaline, the biodegradation of recalcitrant plant and animal polysaccharides can be inhibited by salt-induced microbial stress and/or by limitation of the metabolic capabilities of halophilic microbes. We recently demonstrated that the chitinolytic haloarchaeon Halomicrobium can serve as the host for an ectosymbiont, nanohaloarchaeon 'Candidatus Nanohalobium constans'. Here, we consider whether nanohaloarchaea can benefit from the haloarchaea-mediated degradation of xylan, a major hemicellulose component of wood. Using samples of natural evaporitic brines and anthropogenic solar salterns, we describe genome-inferred trophic relations in two extremely halophilic xylan-degrading three-member consortia. We succeeded in genome assembly and closure for all members of both xylan-degrading cultures and elucidated the respective food chains within these consortia. We provide evidence that ectosymbiontic nanohaloarchaea is an active ecophysiological component of extremely halophilic xylan-degrading communities (although by proxy) in hypersaline environments. In each consortium, nanohaloarchaea occur as ectosymbionts of Haloferax, which in turn act as scavenger of oligosaccharides produced by xylan-hydrolysing Halorhabdus. We further obtained and characterised the nanohaloarchaea-host associations using microscopy, multi-omics and cultivation approaches. The current study also doubled culturable nanohaloarchaeal symbionts and demonstrated that these enigmatic nano-sized archaea can be readily isolated in binary co-cultures using an appropriate enrichment strategy. We discuss the implications of xylan degradation by halophiles in biotechnology and for the United Nation's Sustainable Development Goals.


Assuntos
Haloferax , Xilanos , Ecossistema
6.
Microorganisms ; 10(3)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35336197

RESUMO

Antarctic sea-ice is exposed to a wide range of environmental conditions during its annual existence; however, there is very little information describing the change in sea-ice-associated microbial communities (SIMCOs) during the changing seasons. It is well known that during the solar seasons, SIMCOs play an important role in the polar carbon-cycle, by increasing the total photosynthetic primary production of the South Ocean and participating in the remineralization of phosphates and nitrogen. What remains poorly understood is the dynamic of SIMCO populations and their ecological contribution to carbon and nutrient cycling throughout the entire annual life of Antarctic sea-ice, especially in winter. Sea ice at this time of the year is an extreme environment, characterized by complete darkness (which stops photosynthesis), extremely low temperatures in its upper horizons (down to -45 °C) and high salinity (up to 150-250 psu) in its brine inclusions, where SIMCOs thrive. Without a permanent station, wintering expeditions in Antarctica are technically difficult; therefore, in this study, the process of autumn freezing was modelled under laboratory conditions, and the resulting 'young ice' was further incubated in cold and darkness for one month. The ice formation experiment was primarily designed to reproduce two critical conditions: (i) total darkness, causing the photosynthesis to cease, and (ii) the presence of a large amount of algae-derived organic matter. As expected, in the absence of photosynthesis, the activity of aerobic heterotrophs quickly created micro-oxic conditions, which caused the emergence of new players, namely facultative anaerobic and anaerobic microorganisms. Following this finding, we can state that Antarctic pack-ice and its surrounding ambient (under-ice seawater and platelet ice) are likely to be very dynamic and can quickly respond to environmental changes caused by the seasonal fluctuations. Given the size of Antarctic pack-ice, even in complete darkness and cessation of photosynthesis, its ecosystem appears to remain active, continuing to participate in global carbon-and-sulfur cycling under harsh conditions.

7.
Mar Drugs ; 18(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33255932

RESUMO

Gram-negative Antarctic bacteria adopt survival strategies to live and proliferate in an extremely cold environment. Unusual chemical modifications of the lipopolysaccharide (LPS) and the main component of their outer membrane are among the tricks adopted to allow the maintenance of an optimum membrane fluidity even at particularly low temperatures. In particular, the LPS' glycolipid moiety, the lipid A, typically undergoes several structural modifications comprising desaturation of the acyl chains, reduction in their length and increase in their branching. The investigation of the structure of the lipid A from cold-adapted bacteria is, therefore, crucial to understand the mechanisms underlying the cold adaptation phenomenon. Here we describe the structural elucidation of the highly heterogenous lipid A from three psychrophiles isolated from Terra Nova Bay, Antarctica. All the lipid A structures have been determined by merging data that was attained from the compositional analysis with information from a matrix-assisted laser desorption ionization (MALDI) time of flight (TOF) mass spectrometry (MS) and MS2 investigation. As lipid A is also involved in a structure-dependent elicitation of innate immune response in mammals, the structural characterization of lipid A from such extremophile bacteria is also of great interest from the perspective of drug synthesis and development inspired by natural sources.


Assuntos
Temperatura Baixa , Bactérias Aeróbias Gram-Negativas/metabolismo , Lipídeo A/química , Termotolerância , Regiões Antárticas , Gelo , Lipídeo A/isolamento & purificação , Estrutura Molecular , Água do Mar/microbiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Microbiologia da Água
8.
Proc Natl Acad Sci U S A ; 117(33): 20223-20234, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32759215

RESUMO

Nano-sized archaeota, with their small genomes and limited metabolic capabilities, are known to associate with other microbes, thereby compensating for their own auxotrophies. These diminutive and yet ubiquitous organisms thrive in hypersaline habitats that they share with haloarchaea. Here, we reveal the genetic and physiological nature of a nanohaloarchaeon-haloarchaeon association, with both microbes obtained from a solar saltern and reproducibly cultivated together in vitro. The nanohaloarchaeon Candidatus Nanohalobium constans LC1Nh is an aerotolerant, sugar-fermenting anaerobe, lacking key anabolic machinery and respiratory complexes. The nanohaloarchaeon cells are found physically connected to the chitinolytic haloarchaeon Halomicrobium sp. LC1Hm. Our experiments revealed that this haloarchaeon can hydrolyze chitin outside the cell (to produce the monosaccharide N-acetylglucosamine), using this beta-glucan to obtain carbon and energy for growth. However, LC1Hm could not metabolize either glycogen or starch (both alpha-glucans) or other polysaccharides tested. Remarkably, the nanohaloarchaeon's ability to hydrolyze glycogen and starch to glucose enabled growth of Halomicrobium sp. LC1Hm in the absence of a chitin. These findings indicated that the nanohaloarchaeon-haloarchaeon association is both mutualistic and symbiotic; in this case, each microbe relies on its partner's ability to degrade different polysaccharides. This suggests, in turn, that other nano-sized archaeota may also be beneficial for their hosts. Given that availability of carbon substrates can vary both spatially and temporarily, the susceptibility of Halomicrobium to colonization by Ca Nanohalobium can be interpreted as a strategy to maximize the long-term fitness of the host.


Assuntos
Halobacteriaceae/fisiologia , Nanoarchaeota/fisiologia , Polissacarídeos/metabolismo , Simbiose/fisiologia , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Técnicas de Cocultura , Regulação da Expressão Gênica em Archaea , Genoma Arqueal , Genômica , Filogenia
9.
Mar Pollut Bull ; 129(1): 212-221, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29680540

RESUMO

The present study evaluates an optical bioassay based on green photosynthetic microalgae as a promising alternative for monitoring of relevant seawater pollutants. Photosystem II fluorescence parameters from several microalgae species were examined in the presence of three common marine pesticides that act as photosynthesis inhibitors. The three pollutants were detected within 10 min in concentrations between ng/L-µg/L. The different algae species showed slightly diverse pesticide sensitivities, being Chlorella mirabilis the most sensitive one. Potential interferences due to oil-spill pollutants were discarded. The lipid content was characterized to identify microorganisms with suitable mechanisms that could facilitate stress acclimatization. C. mirabilis presented elevated content of unsaturated lipids, showing a promising potential for biosensing in saline stress conditions. The optimized microalgae-based bioassay was preliminarily incorporated into a marine buoy for autonomous pre-screening of pesticides in coastal areas, demonstrating its suitability for real-time monitoring of marine water and quantitative evaluation of total biotoxicity.


Assuntos
Chlorella/efeitos dos fármacos , Monitoramento Ambiental/métodos , Microalgas/efeitos dos fármacos , Praguicidas/análise , Complexo de Proteína do Fotossistema II/metabolismo , Poluentes Químicos da Água/análise , Bioensaio , Chlorella/metabolismo , Medições Luminescentes , Microalgas/metabolismo , Fotossíntese/efeitos dos fármacos , Água do Mar/química
10.
Front Microbiol ; 9: 3, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29403458

RESUMO

Covering two-thirds of our planet, the global deep ocean plays a central role in supporting life on Earth. Among other processes, this biggest ecosystem buffers the rise of atmospheric CO2. Despite carbon sequestration in the deep ocean has been known for a long time, microbial activity in the meso- and bathypelagic realm via the "assimilation of bicarbonate in the dark" (ABD) has only recently been described in more details. Based on recent findings, this process seems primarily the result of chemosynthetic and anaplerotic reactions driven by different groups of deep-sea prokaryoplankton. We quantified bicarbonate assimilation in relation to total prokaryotic abundance, prokaryotic heterotrophic production and respiration in the meso- and bathypelagic Mediterranean Sea. The measured ABD values, ranging from 133 to 370 µg C m-3 d-1, were among the highest ones reported worldwide for similar depths, likely due to the elevated temperature of the deep Mediterranean Sea (13-14°C also at abyssal depths). Integrated over the dark water column (≥200 m depth), bicarbonate assimilation in the deep-sea ranged from 396 to 873 mg C m-2 d-1. This quantity of produced de novo organic carbon amounts to about 85-424% of the phytoplankton primary production and covers up to 62% of deep-sea prokaryotic total carbon demand. Hence, the ABD process in the meso- and bathypelagic Mediterranean Sea might substantially contribute to the inorganic and organic pool and significantly sustain the deep-sea microbial food web. To elucidate the ABD key-players, we established three actively nitrifying and CO2-fixing prokaryotic enrichments. Consortia were characterized by the co-occurrence of chemolithoautotrophic Thaumarchaeota and chemoheterotrophic proteobacteria. One of the enrichments, originated from Ionian bathypelagic waters (3,000 m depth) and supplemented with low concentrations of ammonia, was dominated by the Thaumarchaeota "low-ammonia-concentration" deep-sea ecotype, an enigmatic and ecologically important group of organisms, uncultured until this study.

11.
Sci Total Environ ; 576: 310-318, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27788446

RESUMO

Bioremediation of marine environment could be the response to oil spills threats. In the present study the fungal community from a Mediterranean marine site chronically interested by oil spills was investigated. Sixty-seven taxa were isolated from water sample and 17 from sediments; for many of the identified species is the first report in seawater and sediments, respectively. The growth of 25% of the fungal isolates was stimulated by crude oil as sole carbon source. Four strains were selected to screen hydrocarbons degradation using the 2,6-dichlorophenol indophenol (DCPIP) colorimetric assay. A. terreus MUT 271, T. harzianum MUT 290 and P. citreonigrum MUT 267 displayed a high decolorization percentage (DP≥68%). A. terreus displayed also the highest decreases of hydrocarbons compounds (up to 40%) quantified by gas-chromatography analysis. These results suggest that the selected fungi could represent potential bioremediation agents with strong crude oil degradative capabilities.


Assuntos
Fungos/classificação , Poluição por Petróleo , Água do Mar/microbiologia , Biodegradação Ambiental , Fungos/isolamento & purificação , Hidrocarbonetos/metabolismo , Região do Mediterrâneo , Petróleo/metabolismo
12.
Environ Microbiol Rep ; 8(4): 508-19, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27345842

RESUMO

Marine prokaryotes have evolved a broad repertoire of defence systems to protect their genomes from lateral gene transfer including innate or acquired immune systems and infection-induced programmed cell suicide and dormancy. Here we report on the analysis of multiple defence systems present in the genome of the strain Cycloclasticus sp. 78-ME isolated from petroleum deposits of the tanker 'Amoco Milford Haven'. Cycloclasticus are ubiquitous bacteria globally important in polyaromatic hydrocarbons degradation in marine environments. Two 'defence islands' were identified in 78-ME genome: the first harbouring CRISPR-Cas with toxin-antitoxin system, while the second was composed by an array of genes for toxin-antitoxin and restriction-modification proteins. Among all identified spacers of CRISPR-Cas system only seven spacers match sequences of phages and plasmids. Furthermore, a conjugative plasmid p7ME01, which belongs to a new IncP-1θ ancestral archetype without any accessory mobile elements was found in 78-ME. Our results provide the context to the co-occurrence of diverse defence mechanisms in the genome of Cycloclasticus sp. 78-ME, which protect the genome of this highly specialized PAH-degrader. This study contributes to the further understanding of complex networks established in petroleum-based microbial communities.


Assuntos
Sistemas CRISPR-Cas , Enzimas de Restrição-Modificação do DNA , Hidrocarbonetos/metabolismo , Piscirickettsiaceae/genética , Piscirickettsiaceae/metabolismo , Plasmídeos/análise , Plasmídeos/classificação , Biotransformação , Genes Bacterianos , Ilhas Genômicas , Água do Mar/microbiologia
13.
Mar Genomics ; 25: 11-13, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26508673

RESUMO

Cycloclasticus sp. 78-ME isolated from petroleum deposits of the sunken tanker "Amoco Milford Haven" (Gulf of Genoa, Ligurian Sea, Italy) could effectively degrade polycyclic aromatic hydrocarbons of up to five condensed rings. The genome of 78-ME was sequenced and analysed to gain insights into its remarkable degrading capacities. It comprises two circular replicons, the 2,613,078 bp chromosome and the plasmid of 42,347 bp, with 41.84% and 53.28% of the G + C content respectively. A total of 2585 protein-coding genes were obtained, and three large operons with more than fifteen enzymes belonging to four different classes of ring-cleavage dioxygenases were found.


Assuntos
Genoma Bacteriano , Piscirickettsiaceae/genética , Bifenilos Policlorados/metabolismo , Biodegradação Ambiental , Regulação Bacteriana da Expressão Gênica , Mar Mediterrâneo , Petróleo/análise , Petróleo/metabolismo , Piscirickettsiaceae/metabolismo , Navios
14.
Proteomics ; 15(20): 3508-20, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26201687

RESUMO

Crude oil is one of the most important natural assets for humankind, yet it is a major environmental pollutant, notably in marine environments. One of the largest crude oil polluted areas in the word is the semi-enclosed Mediterranean Sea, in which the metabolic potential of indigenous microbial populations towards the large-scale chronic pollution is yet to be defined, particularly in anaerobic and micro-aerophilic sites. Here, we provide an insight into the microbial metabolism in sediments from three chronically polluted marine sites along the coastline of Italy: the Priolo oil terminal/refinery site (near Siracuse, Sicily), harbour of Messina (Sicily) and shipwreck of MT Haven (near Genoa). Using shotgun metaproteomics and community metabolomics approaches, the presence of 651 microbial proteins and 4776 metabolite mass features have been detected in these three environments, revealing a high metabolic heterogeneity between the investigated sites. The proteomes displayed the prevalence of anaerobic metabolisms that were not directly related with petroleum biodegradation, indicating that in the absence of oxygen, biodegradation is significantly suppressed. This suppression was also suggested by examining the metabolome patterns. The proteome analysis further highlighted the metabolic coupling between methylotrophs and sulphate reducers in oxygen-depleted petroleum-polluted sediments.


Assuntos
Metabolômica , Poluição por Petróleo , Proteômica , Biodegradação Ambiental , Sedimentos Geológicos/microbiologia , Itália , Mar Mediterrâneo , Petróleo/toxicidade , Microbiologia da Água
15.
Front Microbiol ; 5: 162, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24782850

RESUMO

The purpose of present study was the simulation of an oil spill accompanied by burial of significant amount of petroleum hydrocarbons (PHs) in coastal sediments. Approximately 1000 kg of sediments collected in Messina harbor were spiked with Bunker C furnace fuel oil (6500 ppm). The rapid consumption of oxygen by aerobic heterotrophs created highly reduced conditions in the sediments with subsequent recession of biodegradation rates. As follows, after 3 months of ageing, the anaerobic sediments did not exhibit any significant levels of biodegradation and more than 80% of added Bunker C fuel oil remained buried. Anaerobic microbial community exhibited a strong enrichment in sulfate-reducing PHs-degrading and PHs-associated Deltaproteobacteria. As an effective bioremediation strategy to clean up these contaminated sediments, we applied a Modular Slurry System (MSS) allowing the containment of sediments and their physical-chemical treatment, e.g., aeration. Aeration for 3 months has increased the removal of main PHs contaminants up to 98%. As revealed by CARD-FISH, qPCR, and 16S rRNA gene clone library analyses, addition of Bunker C fuel oil initially affected the activity of autochthonous aerobic obligate marine hydrocarbonoclastic bacteria (OMHCB), and after 1 month more than the third of microbial population was represented by Alcanivorax-, Cycloclasticus-, and Marinobacter-related organisms. In the end of the experiment, the microbial community composition has returned to a status typically observed in pristine marine ecosystems with no detectable OMHCB present. Eco-toxicological bioassay revealed that the toxicity of sediments after treatment was substantially decreased. Thus, our studies demonstrated that petroleum-contaminated anaerobic marine sediments could efficiently be cleaned through an in situ oxygenation which stimulates their self-cleaning potential due to reawakening of allochtonous aerobic OMHCB.

16.
Environ Microbiol Rep ; 6(6): 709-22, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25756124

RESUMO

Ammonium-oxidizing chemoautotrophic members of Thaumarchaea are proposed to be the key players in the assimilation of bicarbonate in the dark (ABD). However, this process may also involve heterotrophic metabolic pathways, such as fixation of carbon dioxide (CO2) via various anaplerotic reactions. We collected samples from the depth of 4900 m at the Matapan-Vavilov Deep (MVD) station (Hellenic Trench, Eastern Mediterranean) and used the multiphasic approach to study the ABD mediators in this deep-sea ecosystem. At this depth, our analysis indicated the occurrence of actively CO2-fixing heterotrophic microbial assemblages dominated by Gammaproteobacteria with virtually no Thaumarchaea present. [14C]-bicarbonate incorporation experiments combined with shotgun [14C]-proteomic analysis identified a series of proteins of gammaproteobacterial origin. More than quarter of them were closely related with Alteromonas macleodii 'deep ecotype' AltDE, the predominant organism in the microbial community of MVD. The present study demonstrated that in the aphotic/hadal zone of the Mediterranean Sea, the assimilation of bicarbonate is associated with both chemolithoauto- and heterotrophic ABD. In some deep-sea areas, the latter may predominantly contribute to the de novo synthesis of organic carbon which points at the important and yet underestimated role heterotrophic bacterial populations can play the in global carbon cycle/sink in the ocean interior.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Bicarbonatos/metabolismo , Carbono/metabolismo , Água do Mar/microbiologia , Bactérias/classificação , Bactérias/genética , Ecossistema , Processos Heterotróficos , Mar Mediterrâneo , Filogenia , Água do Mar/análise
17.
Res Microbiol ; 162(3): 223-30, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21145392

RESUMO

Vibrio anguillarum is a pathogen that causes high mortality in marine and freshwater fish. The aim of this study was to develop a real-time PCR assay for identification and quantification of V. anguillarum in fish tissue. The assay was carried out using two target genes, 16SrDNA and toxR, to evaluate the influence of differences in the operon copy number in quantitative assessment, both in pure cultures of V. anguillarum serovar O1 (strain 975/I), as a reference, and in the liver and kidney of a sea bass (Dicentrarchus labrax) specimen. Real-time PCR analysis showed high specificity for both target genes, with a detection limit of approximately 1-10 bacterial cells per reaction in pure culture and 10/100 V. anguillarum cells per reaction in fish tissue, which corresponds to 2 × 10(2)/2 × 10(3) cells g(-1) fish tissue. Moreover, both genes showed high specificity but differing sensitivity due to the different operon copy number; as a result, it is possible to target the high copy number gene to improve sensitivity. Our results suggest that the protocol we tested can be used as a sensitive and specific molecular method for the detection of the fish pathogen V. anguillarum in fish tissue.


Assuntos
Proteínas de Bactérias/genética , Técnicas Bacteriológicas/métodos , Proteínas de Ligação a DNA/genética , Doenças dos Peixes/diagnóstico , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 16S/genética , Fatores de Transcrição/genética , Vibrioses/veterinária , Vibrio/isolamento & purificação , Animais , Bass/microbiologia , Doenças dos Peixes/microbiologia , Rim/microbiologia , Fígado/microbiologia , Sensibilidade e Especificidade , Vibrio/classificação , Vibrio/genética , Vibrioses/diagnóstico , Vibrioses/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA