Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175605

RESUMO

For practical applications of superconductors, understanding the vortex matter and dynamics is of paramount importance. An important issue in this context is the transition of the vortex glass, which is a true superconducting phase, into a vortex liquid phase having a linear dissipation. By using multi-harmonic susceptibility studies, we have investigated the vortex glass-vortex liquid phase transitions in CaKFe4As4 and BaFe2(As0.68P0.32)2 single crystals. The principle of our method relates the on-set of the third-harmonic susceptibility response with the appearance of a vortex-glass phase in which the dissipation is non-linear. Similar to the high-critical temperature cuprate superconductors, we have shown that even in these iron-based superconductors with significant lower critical temperatures, such phase transition can be treated as a melting in the sense of Lindemann's approach, considering an anisotropic Ginzburg-Landau model. The experimental data are consistent with a temperature-dependent London penetration depth given by a 3D XY fluctuations model. The fitting parameters allowed us to extrapolate the vortex melting lines down to the temperature of liquid hydrogen, and such extrapolation showed that CaKFe4As4 is a very promising superconducting material for high field applications in liquid hydrogen, with a melting field at 20 K of the order of 100 T.


Assuntos
Supercondutividade , Vitrificação , Humanos , Transição de Fase , Anisotropia , Febre , Hidrogênio
2.
Mikrochim Acta ; 189(7): 245, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35674988

RESUMO

The use of gold nanoparticles/superoxide dismutase (AuNP/SOD) bioconjugates is described as building blocks in SOD biosensor development for the quantification of superoxide in cell culture media. AuNP functionalization with 11-mercaptoundecanoic acid (MUA) and 4-mercaptobenzoic acid (MBA) (AuNPMUA and AuNPMBA) was used to improve SOD immobilization through EDC/NHS coupling using their -COOH terminus, leading to the formation of more stable bioconjugates. AuNP and AuNP/SOD bioconjugates were characterized by SEM to determine their size and morphology, UV-Vis for optical properties, FT-IR, and Raman spectroscopies for chemical functional group analysis and EDX for elemental analysis. Electrochemical methods were used to characterize the Au/AuNP-modified electrodes. For the optimization of the biosensor architecture, different AuNP/enzyme bioconjugates were prepared by varying the amount of both enzyme and AuNP, as well as their incubation time. Finally, the biosensors incorporating the bioconjugates were characterized by fixed potential amperometry and voltammetric analysis in order to establish the enzymatic mechanism and to elucidate the best biosensor architecture for monitoring superoxide in cell culture media. The best sensitivity value for superoxide detection corresponded to 41.2 nA µM cm-2, achieved by a biosensor based on AuNPMBA/SOD bioconjugates monitored through fixed potential amperometry at 0.3 V vs. Ag/AgCl, with a limit of detection of 1.0 µM, and overall very good operational stability, maintaining 91% of the initial sensitivity after 30 days. Finally, the optimized biosensor was employed for the quantification of successive additions of superoxide in cell culture media, with excellent recovery values.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Superóxido Dismutase , Superóxidos/análise
3.
Nanomaterials (Basel) ; 12(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35630931

RESUMO

For high-field power applications of high-temperature superconductors, it became obvious in recent years that nano-engineered artificial pinning centers are needed for increasing the critical current and pinning potential. As opposed to the artificial pinning centers obtained by irradiation with various particles, which is a quite expensive approach, we have studied superconducting samples having self-assembled defects, created during the sample fabrication, that act as effective pinning centers. We introduced a simple, straight-forward method of estimating the frequency-dependent critical current density by using frequency-dependent AC susceptibility measurements, in fixed temperatures and DC magnetic fields, from the positions of the maxima in the dependence of the out-of-phase susceptibility on the amplitude of AC excitation magnetic field. The results are compatible with a model that stipulates a logarithmic dependence of the pinning potential on the probing current. A mathematical derivation allowed us to estimate from the experimental data the pinning potentials in various samples, and in various DC magnetic fields. The resulted values indicate large pinning potentials, leading to very small probability of magnetic flux escaping the pinning wells, hence, leading to very high critical currents in high magnetic fields.

5.
Chem Sci ; 8(8): 5291-5298, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28970909

RESUMO

Here we report the first application of non-bactericidal synthetic polymers to modulate the physiology of a bacterial pathogen. Poly(N-[3-(dimethylamino)propyl] methacrylamide) (P1) and poly(N-(3-aminopropyl)methacrylamide) (P2), cationic polymers that bind to the surface of V. cholerae, the infectious agent causing cholera disease, can sequester the pathogen into clusters. Upon clustering, V. cholerae transitions to a sessile lifestyle, characterised by increased biofilm production and the repression of key virulence factors such as the cholera toxin (CTX). Moreover, clustering the pathogen results in the minimisation of adherence and toxicity to intestinal epithelial cells. Our results suggest that the reduction in toxicity is associated with the reduction to the number of free bacteria, but also the downregulation of toxin production. Finally we demonstrate that these polymers can reduce colonisation of zebrafish larvae upon ingestion of water contaminated with V. cholerae. Overall, our results suggest that the physiology of this pathogen can be modulated without the need to genetically manipulate the microorganism and that this modulation is an off-target effect that results from the intrinsic ability of the pathogen to sense and adapt to its environment. We believe these findings pave the way towards a better understanding of the interactions between pathogenic bacteria and polymeric materials and will underpin the development of novel antimicrobial polymers.

6.
Polym Chem ; 8(31): 4576-4584, 2017 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30174727

RESUMO

Here we present the synthesis and post-polymerisation modification of poly(acryloyl hydrazide), a versatile scaffold for the preparation of functional polymers: poly(acryloyl hydrazide) was prepared from commercially available starting materials in a three step synthesis on a large scale, in good yields and high purity. Our synthetic approach included the synthesis of a Boc-protected acryloyl hydrazide, the preparation of polymers via RAFT polymerisation and the deprotection of the corresponding Boc-protected poly(acryloyl hydrazide). Post-polymerisation modification of poly(acryloyl hydrazide) was then demonstrated using a range of conditions for both hydrophilic and hydrophobic aldehydes. These experiments demonstrate the potential of poly(acryloyl hydrazide) as a scaffold in the synthesis of functional polymers, in particular those applications where in situ screening of the activity of the functionalised polymers may be required (e.g. biological applications).

7.
Angew Chem Int Ed Engl ; 55(26): 7492-5, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27100572

RESUMO

A new method is reported herein for screening the biological activity of functional polymers across a consistent degree of polymerization and in situ, that is, under aqueous conditions and without purification/isolation of candidate polymers. In brief, the chemical functionality of a poly(acryloyl hydrazide) scaffold was activated under aqueous conditions using readily available aldehydes to obtain amphiphilic polymers. The transport activity of the resulting polymers can be evaluated in situ using model membranes and living cells without the need for tedious isolation and purification steps. This technology allowed the rapid identification of a supramolecular polymeric vector with excellent efficiency and reproducibility for the delivery of siRNA into human cells (HeLa-EGFP). The reported method constitutes a blueprint for the high-throughput screening and future discovery of new polymeric functional materials with important biological applications.


Assuntos
Sistemas de Liberação de Medicamentos , Polímeros/química , RNA Interferente Pequeno/farmacologia , Células HeLa , Humanos , Polímeros/farmacologia , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA