Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Nutrients ; 16(18)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39339668

RESUMO

BACKGROUND: Extra virgin olive oil is a fundamental component of the Mediterranean diet. It contains several molecules that sustain human well-being by modulating cellular metabolism and exerting antioxidant, anti-inflammatory, and anti-ageing effects to protect normal tissues, and it can exert anti-angiogenic and pro-apoptotic effects on cancer cells. Metabolites found in different parts of the olive tree, including leaves, also possess properties that might help in cancer prevention and promote wellness in aging. Olive mill wastewater (OMWW), a liquid residue produced during olive oil extraction, represents an environmental issue. However, it is rich in phytochemicals with potential beneficial properties. Dietary supplements based on OMWW can be produced for nutritional supplementation with advantages to the ecology. PURPOSE: This work aims to measure hematochemical, anthropometric, and metabolomic parameters in volunteers taking an OMWW dietary supplement, Oliphenolia® (OMWW-OL). METHODS: The supplementation of OMWW-OL 25 mL twice daily for 30 days was tested on a pilot cohort of volunteers with characteristics close to metabolic syndrome. Hematochemical, anthropometric, serum biomarkers and serum metabolomic parameters were analyzed before the intervention, at 30 days, and 30 days after stopping consumption. RESULTS: A total of 29 volunteers were enrolled, and 23 completed the study. The participants' parameters at baseline were measured, and then twice daily at 30 days of treatment and 30 days after assumption discontinuation. Although treatment was with an olive derivative, their weight did not increase. Their body mass index, instead of augmenting, slightly decreased, particularly in the women. Also, hydration increased, especially in the women, while blood pressure, glycemia, and insulin decreased. Cholesterol, high-density lipoproteins, and triglycerides were stable, and LDL levels decreased, while vitamin D levels, alongside calcium, perceptibly increased. Albumin also increased. All the values were in support of an equilibrium, with no damaging effects. By mass spectrometry analysis, we also found favorable changes in the vitamin D/histamine and homocysteine/methionine ratios, an increase in a new metabolite of unknown formula, and the vitamin D/unknown metabolite ratio. CONCLUSIONS: Supplementation of OMWW-OL has no detrimental effects and might imply the beneficial modulation of several biological parameters. Although this is a small pilot study, with limited potency, it preliminarily suggests that the OMWW extract use could be potentially valuable for people at risk of metabolic syndrome. Some of these parameters could also be relevant in supporting healthy ageing and in cancer prevention.


Assuntos
Suplementos Nutricionais , Olea , Compostos Fitoquímicos , Extratos Vegetais , Humanos , Olea/química , Extratos Vegetais/farmacologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Projetos Piloto , Biomarcadores/sangue , Antropometria , Azeite de Oliva , Dieta Mediterrânea
2.
Microorganisms ; 12(4)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38674588

RESUMO

The COVID-19 pandemic has sparked a surge in research on microbiology and virology, shedding light on overlooked aspects such as the infection of bacteria by RNA virions in the animal microbiome. Studies reveal a decrease in beneficial gut bacteria during COVID-19, indicating a significant interaction between SARS-CoV-2 and the human microbiome. However, determining the origins of the virus remains complex, with observed phenomena such as species jumps adding layers to the narrative. Prokaryotic cells play a crucial role in the disease's pathogenesis and transmission. Analyzing previous studies highlights intricate interactions from clinical manifestations to the use of the nitrogen isotope test. Drawing parallels with the history of the Poliovirus underscores the need to prioritize investigations into prokaryotic cells hosting RNA viruses.

4.
J Med Virol ; 96(3): e29507, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38504586

RESUMO

The bacteriophage behavior of SARS-CoV-2 during the acute and post-COVID-19 phases appears to be an important factor in the development of the disease. The early use of antibiotics seems to be crucial to inhibit disease progression-to prevent viral replication in the gut microbiome, and control toxicological production from the human microbiome. To study the impact of specific antibiotics on recovery from COVID-19 and long COVID (LC) taking into account: vaccination status, comorbidities, SARS-CoV-2 wave, time of initiation of antibiotic therapy and concomitant use of corticosteroids and nonsteroidal anti-inflammatory drugs (NSAIDs). A total of 211 COVID-19 patients were included in the study: of which 59 were vaccinated with mRNA vaccines against SARS-CoV-2 while 152 were unvaccinated. Patients were enrolled in three waves: from September 2020 to October 2022, corresponding to the emergence of the pre-Delta, Delta, and Omicron variants of the SARS-CoV-2 virus. The three criteria for enrolling patients were: oropharyngeal swab positivity or fecal findings; moderate symptoms with antibiotic intake; and measurement of blood oxygen saturation during the period of illness. The use of antibiotic combinations, such as amoxicillin with clavulanic acid (875 + 125 mg tablets, every 12 h) plus rifaximin (400 mg tablets every 12 h), as first choice, as suggested from the previous data, or azithromycin (500 mg tablets every 24 h), plus rifaximin as above, allows healthcare professionals to focus on the gut microbiome and its implications in COVID-19 disease during patient care. The primary outcome measured in this study was the estimated average treatment effect, which quantified the difference in mean recovery between patients receiving antibiotics and those not receiving antibiotics at 3 and 9 days after the start of treatment. In the analysis, both vaccinated and unvaccinated groups had a median illness duration of 7 days (interquartile range [IQR] 6-9 days for each; recovery crude hazard ratio [HR] = 0.94, p = 0.700). The median illness duration for the pre-Delta and Delta waves was 8 days (IQR 7-10 days), while it was shorter, 6.5 days, for Omicron (IQR 6-8 days; recovery crude HR = 1.71, p < 0.001). These results were confirmed by multivariate analysis. Patients with comorbidities had a significantly longer disease duration: median 8 days (IQR 7-10 days) compared to 7 days (IQR 6-8 days) for those without comorbidities (crude HR = 0.75, p = 0.038), but this result was not confirmed in multivariate analysis as statistical significance was lost. Early initiation of antibiotic therapy resulted in a significantly shorter recovery time (crude HR = 4.74, p < 0.001). Concomitant use of NSAIDs did not reduce disease duration and in multivariate analysis prolonged the disease (p = 0.041). A subgroup of 42 patients receiving corticosteroids for a median of 3 days (IQR 3-6 days) had a longer recovery time (median 9 days, IQR 8-10 days) compared to others (median 7 days, IQR 6-8 days; crude HR = 0.542, p < 0.001), as confirmed also by the adjusted HR. In this study, a statistically significant reduction in recovery time was observed among patients who received early antibiotic treatment. Early initiation of antibiotics played a crucial role in maintaining higher levels of blood oxygen saturation. In addition, it is worth noting that a significant number of patients who received antibiotics in the first 3 days and for a duration of 7 days, during the acute phase did not develop LC.


Assuntos
Antibacterianos , COVID-19 , Humanos , Antibacterianos/uso terapêutico , COVID-19/prevenção & controle , Rifaximina , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , Vacinas contra COVID-19 , Estudos Retrospectivos , Anti-Inflamatórios não Esteroides , Corticosteroides
5.
J Transl Med ; 22(1): 143, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336738

RESUMO

BACKGROUND: Bone is a metabolically active tissue containing different cell types acting as endocrine targets and effectors. Further, bone is a dynamic depot for calcium, phosphorous and other essential minerals. The tissue matrix is subjected to a constant turnover in response to mechanical/endocrine stimuli. Bone turnover demands high energy levels, making fatty acids a crucial source for the bone cells. However, the current understanding of bone cell metabolism is poor. This is partly due to bone matrix complexity and difficulty in small molecules extraction from bone samples. This study aimed to evaluate the effect of metabolite sequestering from a protein-dominated matrix to increase the quality and amount of metabolomics data in discovering small molecule patterns in pathological conditions. METHODS: Human bone samples were collected from 65 to 85 years old (the elderly age span) patients who underwent hip replacement surgery. Separated cortical and trabecular bone powders were treated with decalcifying, enzymatic (collagenase I and proteinase K) and solvent-based metabolite extraction protocols. The extracted mixtures were analyzed with the high-resolution mass spectrometry (HRMS). Data analysis was performed with XCMS and MetaboAnalystR packages. RESULTS: Fast enzymatic treatment of bone samples before solvent addition led to a significantly higher yield of metabolite extraction. Collagenase I and proteinase K rapid digestion showed more effectiveness in cortical and trabecular bone samples, with a significantly higher rate (2.2 folds) for collagenase I. Further analysis showed significant enrichment in pathways like de novo fatty acid biosynthesis, glycosphingolipid metabolism and fatty acid oxidation-peroxisome. CONCLUSION: This work presents a novel approach for bone sample preparation for HRMS metabolomics. The disruption of bone matrix conformation at the molecular level helps the molecular release into the extracting solvent and, therefore, can lead to higher quality results and trustable biomarker discovery. Our results showed ß-oxidation alteration in the aged bone sample. Future work covering more patients is worthy to identify the effective therapeutics to achieve healthy aging.


Assuntos
Colagenases , Metabolômica , Humanos , Idoso , Idoso de 80 Anos ou mais , Endopeptidase K , Metabolômica/métodos , Solventes , Ácidos Graxos
6.
J Mass Spectrom ; 59(1): e4991, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38108532

RESUMO

Mass spectrometry is widely employed in various analytical fields for both compound identification and quantification. While in the case of compound identification, the high-resolution instrument has increased selectivity and characterization efficiency; in the case of quantitative analysis, some critical tasks actually remain. In particular, different compounds exhibit different ionization efficiency, and this introduces the need to have a calibration standard for each analyte. In this paper, we present a new elaborative data technology, which makes it possible to standardize calibration between different instruments and molecules, making it absolute. The method was applied to data acquired by means of liquid chromatography mass spectrometry by means of an ion trap analyzer. The approach is based on the correlation of the ion trap space charge effect and the analyte concentration. The method was validated in the analysis of compounds having different polarity: hydrossitirosol, arginine, thyodiglicolic acid, and a peptide mixture of bacteria cultures derived the human gut microbiome where was found poliovirus. Moreover, it was used to obtain the absolute quantitation of peptides originating from the tryptic digestion of bacterial proteins in the fecal samples. It was therefore possible to identify and quantify different derived bacterial proteins of the poliomyelitis virus coded in bacteria derived from the gastrointestinal tract.


Assuntos
Arginina , Projetos de Pesquisa , Humanos , Proteínas de Bactérias , Calibragem , Peptídeos
7.
Gut Microbes ; 15(1): 2244718, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37559387

RESUMO

Zhou et al. study nicely traces a significant topic in COVID-19 infection: the persistence of the virus within the intestinal tract. Many pathological mechanisms have been noted in the current literature about the mode of infection and propagation of SARS-CoV-2 in the human body. Nevertheless, there are still many concerns about this: only some things seem well understood. We present a different point of view by illustrating the importance of the gut microbiome in the pathogenesis of COVID-19 disorders.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Humanos , SARS-CoV-2
8.
Proteomics Clin Appl ; 17(6): e2300048, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37650258

RESUMO

PURPOSE: The SARS-CoV-2 pandemic prompted the development and use of next-generation vaccines. Among these, mRNA-based vaccines consist of injectable solutions of mRNA encoding for a recombinant Spike, which is distinguishable from the wild-type protein due to specific amino acid variations introduced to maintain the protein in a prefused state. This work presents a proteomic approach to reveal the presence of recombinant Spike protein in vaccinated subjects regardless of antibody titer. EXPERIMENTAL DESIGN: Mass spectrometry examination of biological samples was used to detect the presence of specific fragments of recombinant Spike protein in subjects who received mRNA-based vaccines. RESULTS: The specific PP-Spike fragment was found in 50% of the biological samples analyzed, and its presence was independent of the SARS-CoV-2 IgG antibody titer. The minimum and maximum time at which PP-Spike was detected after vaccination was 69 and 187 days, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: The presented method allows to evaluate the half-life of the Spike protein molecule "PP" and to consider the risks or benefits in continuing to administer additional booster doses of the SARS-CoV-2 mRNA vaccine. This approach is of valuable support to complement antibody level monitoring and represents the first proteomic detection of recombinant Spike in vaccinated subjects.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , SARS-CoV-2/genética , Proteômica , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/prevenção & controle , RNA Mensageiro/genética , Vacinação
9.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835341

RESUMO

SARS-CoV-2, one of the human RNA viruses, is widely studied around the world. Significant efforts have been made to understand its molecular mechanisms of action and how it interacts with epithelial cells and the human microbiome since it has also been observed in gut microbiome bacteria. Many studies emphasize the importance of surface immunity and also that the mucosal system is critical in the interaction of the pathogen with the cells of the oral, nasal, pharyngeal, and intestinal epithelium. Recent studies have shown how bacteria in the human gut microbiome produce toxins capable of altering the classical mechanisms of interaction of viruses with surface cells. This paper presents a simple approach to highlight the initial behavior of a novel pathogen, SARS-CoV-2, on the human microbiome. The immunofluorescence microscopy technique can be combined with spectral counting performed at mass spectrometry of viral peptides in bacterial cultures, along with identification of the presence of D-amino acids within viral peptides in bacterial cultures and in patients' blood. This approach makes it possible to establish the possible expression or increase of viral RNA viruses in general and SARS-CoV-2, as discussed in this study, and to determine whether or not the microbiome is involved in the pathogenetic mechanisms of the viruses. This novel combined approach can provide information more rapidly, avoiding the biases of virological diagnosis and identifying whether a virus can interact with, bind to, and infect bacteria and epithelial cells. Understanding whether some viruses have bacteriophagic behavior allows vaccine therapies to be focused either toward certain toxins produced by bacteria in the microbiome or toward finding inert or symbiotic viral mutations with the human microbiome. This new knowledge opens a scenario on a possible future vaccine: the probiotics vaccine, engineered with the right resistance to viruses that attach to both the epithelium human surface and gut microbiome bacteria.


Assuntos
Bacteriófagos , COVID-19 , Vírus , Humanos , SARS-CoV-2/genética , RNA , Bacteriófagos/genética , Aminoácidos , Proteômica , Vírus/genética , Microscopia de Fluorescência
10.
J Prev Med Hyg ; 63(2 Suppl 3): E142-E149, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36479478

RESUMO

Precision nutrition is an emerging branch of nutrition science that aims to use modern omics technologies (genomics, proteomics, and metabolomics) to assess an individual's response to specific foods or dietary patterns and thereby determine the most effective diet or lifestyle interventions to prevent or treat specific diseases. Metabolomics is vital to nearly every aspect of precision nutrition. It can be targeted or untargeted, and it has many applications. Indeed, it can be used to comprehensively characterize the thousands of chemicals in foods, identify food by-products in human biofluids or tissues, characterize nutrient deficiencies or excesses, monitor biochemical responses to dietary interventions, track long- or short-term dietary habits, and guide the development of nutritional therapies. Indeed, metabolomics can be coupled with genomics and proteomics to study and advance the field of precision nutrition. Integrating omics with epidemiological and clinical data will begin to define the beneficial effects of human food metabolites. In this review, we present the metabolome and its relationship to precision nutrition. Moreover, we describe the different techniques used in metabolomics and present how metabolomics has been applied to advance the field of precision nutrition by providing notable examples and cases.


Assuntos
Dieta , Humanos
11.
J Prev Med Hyg ; 63(2 Suppl 3): E289-E296, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36479485

RESUMO

Water holds great relevance in various biological and biochemical systems. Water behaves as an excellent solvent, a reactant, a product and a catalyst of the reaction. The organisation of the water molecules, synergised by hydrogen bonds, builds up the structure of the water clusters. These water clusters significantly influence biological functions. To study the domain of water clusters using Ion mobility mass spectrometry with surface activated chemical ionisation. The experimental analysis was aimed to determine the water behaviour in terms of cluster formation before and after the application of a physical effect, namely low-frequency irradiation. A sanist platform-based spectrometer, manufactured by ISB srl with SACI version for protein analysis, was used as the equipment. Furthermore, for samples, we used pure de-ionised water, a part of which was used virgin, and another part was irradiated. Ion-mobility mass spectrometry (IM-MS) procedure was adopted as the experimental method. An electromagnetic frequency fields generator was used to subject the test samples to electromagnetic radiations between 7 Hz to 80 Hz. The presence of neutral water species was confirmed in the water samples. For the same m/z, water ion clusters in the untreated water were found to have a much higher intensity than the electromagnetically treated water. The presence of a water cluster near the (M+H)+ in electromagnetically treated dilute arginine solution was also confirmed. It is possible to detect water ion clusters by using Ion mobility mass spectrometry and SACI with low surface potential (47 V). The water cluster formation and its characteristics were found to be different in the treated and non-treated water. The electromagnetic radiations of low frequency seem to affect the hydrogen bonds of the water molecules.


Assuntos
Projetos de Pesquisa , Água , Humanos , Espectrometria de Massas
12.
J Mass Spectrom ; 57(8): e4876, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35941810

RESUMO

In this work, the isolation step in the linear ion trap was performed using different "q values" conditions at a low collision-induced dissociation (CID) energy leading to the parent ion resolution improvements, reasonably due to better ion energy distribution. According to the results, we obtained a greater resolution and mass accuracy operating in both traditional electrospray and low voltage ionization near the q value = 0.778 and with a CID energy of 10%. This effect was evaluated with low-molecular-mass compounds (skatole and arginine). The proposed optimization yielded a superior instrument performance without adding technological complexity to mass spectrometry analyses.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas por Ionização por Electrospray/métodos
13.
Medicina (Kaunas) ; 58(5)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35630059

RESUMO

This short communication describes the reinfection after nearly 18 months of the same patient who was previously infected with coronavirus disease 2019 (COVID-19) and who showed multiple negative real-time quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) results by nasal swabs for severe acute respiratory syndrome coronavirus (SARS-CoV-2) but positive results on a fecal sample. We previously noted how, in the presence of symptoms suggestive of pneumonia, visible on a chest computed tomography (CT) scan and confirmed by fecal molecular testing, it was possible to draw the diagnosis of SARS-CoV-2 infection. One year later, the same patient was again affected by SARS-CoV-2. This time, the first antigenic nasal swab showed readily positive results. However, the patient's clinical course appeared to be more attenuated, showing no signs of pulmonary involvement in the radiographic examinations performed. This case shows a novelty in the pulmonary radiological evaluation of new SARS-CoV-2 infection.


Assuntos
COVID-19 , Reinfecção , COVID-19/diagnóstico , Fezes , Humanos , Nasofaringe , SARS-CoV-2
14.
Vaccines (Basel) ; 10(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35632464

RESUMO

SARS-CoV-2 has become one of the most studied viruses of the last century. It was assumed that the only possible host for these types of viruses was mammalian eukaryotic cells. Our recent studies show that microorganisms in the human gastrointestinal tract affect the severity of COVID-19 and for the first time provide indications that the virus might replicate in gut bacteria. In order to further support these findings, in the present work, cultures of bacteria from the human microbiome and SARS-CoV-2 were analyzed by electron and fluorescence microscopy. The images presented in this article, in association with the nitrogen (15N) isotope-labeled culture medium experiment, suggest that SARS-CoV-2 could also infect bacteria in the gut microbiota, indicating that SARS-CoV-2 could act as a bacteriophage. Our results add new knowledge to the understanding of the mechanisms of SARS-CoV-2 infection and fill gaps in the study of the interactions between SARS-CoV-2 and non-mammalian cells. These findings could be useful in suggesting specific new pharmacological solutions to support the vaccination campaign.

15.
Reprod Toxicol ; 111: 34-48, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35525527

RESUMO

The possible neurodevelopmental consequences of SARS-CoV-2 infection are presently unknown. In utero exposure to SARS-CoV-2 has been hypothesized to affect the developing brain, possibly disrupting neurodevelopment of children. Spike protein interactors, such as ACE2, have been found expressed in the fetal brain, and could play a role in potential SARS-CoV-2 fetal brain pathogenesis. Apart from the possible direct involvement of SARS-CoV-2 or its specific viral components in the occurrence of neurological and neurodevelopmental manifestations, we recently reported the presence of toxin-like peptides in plasma, urine and fecal samples specifically from COVID-19 patients. In this study, we investigated the possible neurotoxic effects elicited upon 72-hour exposure to human relevant levels of recombinant spike protein, toxin-like peptides found in COVID-19 patients, as well as a combination of both in 3D human iPSC-derived neural stem cells differentiated for either 2 weeks (short-term) or 8 weeks (long-term, 2 weeks in suspension + 6 weeks on MEA) towards neurons/glia. Whole transcriptome and qPCR analysis revealed that spike protein and toxin-like peptides at non-cytotoxic concentrations differentially perturb the expression of SPHK1, ELN, GASK1B, HEY1, UTS2, ACE2 and some neuronal-, glia- and NSC-related genes critical during brain development. Additionally, exposure to spike protein caused a decrease of spontaneous electrical activity after two days in long-term differentiated cultures. The perturbations of these neurodevelopmental endpoints are discussed in the context of recent knowledge about the key events described in Adverse Outcome Pathways relevant to COVID-19, gathered in the context of the CIAO project (https://www.ciao-covid.net/).


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Encéfalo/metabolismo , Criança , Humanos , Neuroglia , Neurônios/metabolismo , Peptídeos , Glicoproteína da Espícula de Coronavírus/metabolismo
16.
Biomedicines ; 11(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36672595

RESUMO

It has been 3 years since the beginning of the SARS-CoV-2 outbreak, however it is as yet little known how to care for the acute COVID-19 and long COVID patients. COVID-19 clinical manifestations are of both pulmonary and extra-pulmonary types. Extra-pulmonary ones include extreme tiredness (fatigue), shortness of breath, muscle aches, hyposmia, dysgeusia, and other neurological manifestations. In other autoimmune diseases, such as Parkinson's disease (PD) or Alzheimer's Disease (AD), it is well known that role of acetylcholine is crucial in olfactory dysfunction. We have already observed the presence of toxin-like peptides in plasma, urine, and faecal samples from COVID-19 patients, which are very similar to molecules known to alter acetylcholine signaling. After observing the production of these peptides in bacterial cultures, we have performed additional proteomics analyses to better understand their behavior and reported the extended data from our latest in vitro experiment. It seems that the gut microbiome continues to produce toxin-like peptides also after the decrease of RNA SARS-CoV-2 viral load at molecular tests. These toxicological interactions between the gut/human microbiome bacteria and the virus suggest a new scenario in the study of the clinical symptoms in long COVID and also in acute COVID-19 patients. It is discussed that in the bacteriophage similar behavior, the presence of toxins produced by bacteria continuously after viral aggression can be blocked using an appropriate combination of certain drugs.

17.
F1000Res ; 11: 135, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-39464247

RESUMO

Many studies report the importance of using feces as source sample for detecting SARS-CoV-2 in patients with COVID-19 symptoms but who are negative to oropharyngeal/ nasopharyngeal tests. Here, we report the case of an asymptomatic child whose family members had negative results with the rapid antigen nasopharyngeal swab tests. The 21-month-old child presented with fever, diarrhea, bilateral conjunctivitis, and conspicuous lacrimation. In this study, analysis for the presence of SARS-CoV-2 in fecal samples by using Luminex technology allowed accurate detection of the presence of the viral RNA in the feces of the child and of all her relatives, which thus resulted to be positive but asymptomatic. It is the first time that SARS-CoV-2- is observed inside human fecal-oral bacteria and outside a matrix resembling extracellular bacterial lysates, in agreement with a bacteriophage mechanism with the images obtained by transmission electron microscopy (TEM), post-embedding immunogold, and by fluorescence microscope. In addition to the typical observations of respiratory symptoms, accurate evaluation of clinical gastrointestinal and neurological symptoms, combined with efficient highly sensitive molecular testing on feces, represent an efficient approach for detecting SARS-CoV-2, and for providing the correct therapy in challenging COVID-19 cases, like the one here reported.

18.
Front Oncol ; 11: 769158, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868998

RESUMO

Reliable liquid biopsy-based tools able to accurately discriminate prostate cancer (PCa) from benign prostatic hyperplasia (BPH), when PSA is within the "gray zone" (PSA 4-10), are still urgent. We analyzed plasma samples from a cohort of 102 consecutively recruited patients with PSA levels between 4 and 16 ng/ml, using the SANIST-Cloud Ion Mobility Metabolomic Mass Spectrometry platform, combined with the analysis of a panel of circulating microRNAs (miR). By coupling CIMS ion mobility technology with SANIST, we were able to reveal three new structures among the most differentially expressed metabolites in PCa vs. BPH. In particular, two were classified as polyunsaturated ceramide ester-like and one as polysaturated glycerol ester-like. Penalized logistic regression was applied to build a model to predict PCa, using six circulating miR, seven circulating metabolites, and demographic/clinical variables, as covariates. Four circulating metabolites, miR-5100, and age were selected by the model, and the corresponding prediction score gave an AUC of 0.76 (C.I. = 0.66-0.85). At a specified cut-off, no high-risk tumor was misclassified, and 22 out of 53 BPH were correctly identified, reducing by 40% the false positives of PSA. We developed and applied a novel, minimally invasive, liquid biopsy-based powerful tool to characterize novel metabolites and identified new potential non-invasive biomarkers to better predict PCa, when PSA is uninformative as a tool for precision medicine in genitourinary cancers.

19.
F1000Res ; 10: 370, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336189

RESUMO

Background Scientific evidence for the involvement of human microbiota in the development of COVID-19 disease has been reported recently. SARS-CoV-2 RNA presence in human faecal samples and SARS-CoV-2 activity in faeces from COVID-19 patients have been observed. Methods Starting from these observations, an experimental design was developed to cultivate in vitro faecal microbiota from infected individuals, to monitor the presence of SARS-CoV-2, and to collect data on the relationship between faecal bacteria and the virus. Results Our results indicate that SARS-CoV-2 replicates in vitro in bacterial growth medium, that the viral replication follows bacterial growth and it is influenced by the administration of specific antibiotics. SARS-CoV-2-related peptides have been detected in 30-day bacterial cultures and characterised. Discussion Our observations are compatible with a 'bacteriophage-like' behaviour of SARS-CoV-2, which, to our knowledge has not been observed or described before. These results are unexpected and hint towards a novel hypothesis on the biology of SARS-CoV-2 and on the COVID-19 epidemiology. The discovery of possible new modes of action of SARS-CoV-2 has far-reaching implications for the prevention and the treatment of the disease.


Assuntos
COVID-19 , SARS-CoV-2 , Biologia , Fezes , Humanos , RNA Viral
20.
F1000Res ; 10: 550, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35106136

RESUMO

Background: SARS-CoV-2 that causes COVID-19 disease and led to the pandemic currently affecting the world has been broadly investigated. Different studies have been performed to understand the infection mechanism, and the involved human genes, transcripts and proteins. In parallel, numerous clinical extra-pulmonary manifestations co-occurring with COVID-19 disease have been reported and evidence of their severity and persistence is increasing. Whether these manifestations are linked to other disorders co-occurring with SARS-CoV-2 infection, is under discussion. In this work, we report the identification of toxin-like peptides in COVID-19 patients by application of the Liquid Chromatography Surface-Activated Chemical Ionization - Cloud Ion Mobility Mass Spectrometry.   Methods: Plasma, urine and faecal samples from COVID-19 patients and control individuals were analysed to study peptidomic toxins' profiles. Protein precipitation preparation procedure was used for plasma, to remove high molecular weight proteins and efficiently solubilize the peptide fraction; in the case of faeces and urine, direct peptide solubilization was employed.   Results: Toxin-like peptides, almost identical to toxic components of venoms from animals, like conotoxins, phospholipases, phosphodiesterases, zinc metal proteinases, and bradykinins, were identified in samples from COVID-19 patients, but not in control samples.  Conclusions: The presence of toxin-like peptides could potentially be connected to SARS-CoV-2 infection. Their presence suggests a possible association between COVID-19 disease and the release in the body of (oligo-)peptides almost identical to toxic components of venoms from animals. Their involvement in a large set of heterogeneous extra-pulmonary COVID-19 clinical manifestations, like neurological ones, cannot be excluded. Although the presence of each individual symptom is not selective of the disease, their combination might be related to COVID-19 by the coexistence of the panel of the here detected toxin-like peptides. The presence of these peptides opens new scenarios on the aetiology of the COVID-19 clinical symptoms observed up to now, including neurological manifestations.


Assuntos
COVID-19 , Fezes , Humanos , Pandemias , Peptídeos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA