Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37968117

RESUMO

Neuromodulation lends flexibility to neural circuit operation but the general notion that different neuromodulators sculpt neural circuit activity into distinct and characteristic patterns is complicated by interindividual variability. In addition, some neuromodulators converge onto the same signaling pathways, with similar effects on neurons and synapses. We compared the effects of three neuropeptides on the rhythmic pyloric circuit in the stomatogastric ganglion of male crabs, Cancer borealis Proctolin (PROC), crustacean cardioactive peptide (CCAP), and red pigment concentrating hormone (RPCH) activate the same modulatory inward current, I MI, and have convergent actions on synapses. However, while PROC targets all four neuron types in the core pyloric circuit, CCAP and RPCH target the same subset of only two neurons. After removal of spontaneous neuromodulator release, none of the neuropeptides restored the control cycle frequency, but all restored the relative timing between neuron types. Consequently, differences between neuropeptide effects were mainly found in the spiking activity of different neuron types. We performed statistical comparisons using the Euclidean distance in the multidimensional space of normalized output attributes to obtain a single measure of difference between modulatory states. Across preparations, the circuit output in PROC was distinguishable from CCAP and RPCH, but CCAP and RPCH were not distinguishable from each other. However, we argue that even between PROC and the other two neuropeptides, population data overlapped enough to prevent reliable identification of individual output patterns as characteristic for a specific neuropeptide. We confirmed this notion by showing that blind classifications by machine learning algorithms were only moderately successful.Significance Statement It is commonly assumed that distinct behaviors or circuit activities can be elicited by different neuromodulators. Yet it is unknown to what extent these characteristic actions remain distinct across individuals. We use a well-studied circuit model of neuromodulation to examine the effects of three neuropeptides, each known to produce a distinct activity pattern in controlled studies. We find that, when compared across individuals, the three peptides elicit activity patterns that are either statistically indistinguishable or show too much overlap to be labeled characteristic. We ascribe this to interindividual variability and overlapping subcellular actions of the modulators. Because both factors are common in all neural circuits, these findings have broad significance for understanding chemical neuromodulatory actions while considering interindividual variability.


Assuntos
Braquiúros , Neuropeptídeos , Masculino , Humanos , Animais , Neuropeptídeos/metabolismo , Peptídeos/farmacologia , Neurônios/fisiologia , Neurotransmissores/farmacologia , Transdução de Sinais , Braquiúros/fisiologia , Gânglios dos Invertebrados/fisiologia
2.
bioRxiv ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37333253

RESUMO

Neuromodulation lends flexibility to neural circuit operation but the general notion that different neuromodulators sculpt neural circuit activity into distinct and characteristic patterns is complicated by interindividual variability. In addition, some neuromodulators converge onto the same signaling pathways, with similar effects on neurons and synapses. We compared the effects of three neuropeptides on the rhythmic pyloric circuit in the crab Cancer borealis stomatogastric nervous system. Proctolin (PROC), crustacean cardioactive peptide (CCAP), and red pigment concentrating hormone (RPCH) all activate the same modulatory inward current, IMI, and have convergent actions on synapses. However, while PROC targets all four neuron types in the core pyloric circuit, CCAP and RPCH target the same subset of only two neurons. After removal of spontaneous neuromodulator release, none of the neuropeptides restored the control cycle frequency, but all restored the relative timing between neuron types. Consequently, differences between neuropeptide effects were mainly found in the spiking activity of different neuron types. We performed statistical comparisons using the Euclidean distance in the multidimensional space of normalized output attributes to obtain a single measure of difference between modulatory states. Across preparations, circuit output in PROC was distinguishable from CCAP and RPCH, but CCAP and RPCH were not distinguishable from each other. However, we argue that even between PROC and the other two neuropeptides, population data overlapped enough to prevent reliable identification of individual output patterns as characteristic for a specific neuropeptide. We confirmed this notion by showing that blind classifications by machine learning algorithms were only moderately successful.

3.
Elife ; 112022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35302489

RESUMO

Neural circuits can generate many spike patterns, but only some are functional. The study of how circuits generate and maintain functional dynamics is hindered by a poverty of description of circuit dynamics across functional and dysfunctional states. For example, although the regular oscillation of a central pattern generator is well characterized by its frequency and the phase relationships between its neurons, these metrics are ineffective descriptors of the irregular and aperiodic dynamics that circuits can generate under perturbation or in disease states. By recording the circuit dynamics of the well-studied pyloric circuit in Cancer borealis, we used statistical features of spike times from neurons in the circuit to visualize the spike patterns generated by this circuit under a variety of conditions. This approach captures both the variability of functional rhythms and the diversity of atypical dynamics in a single map. Clusters in the map identify qualitatively different spike patterns hinting at different dynamic states in the circuit. State probability and the statistics of the transitions between states varied with environmental perturbations, removal of descending neuromodulatory inputs, and the addition of exogenous neuromodulators. This analysis reveals strong mechanistically interpretable links between complex changes in the collective behavior of a neural circuit and specific experimental manipulations, and can constrain hypotheses of how circuits generate functional dynamics despite variability in circuit architecture and environmental perturbations.


Assuntos
Braquiúros , Gânglios dos Invertebrados , Animais , Braquiúros/fisiologia , Gânglios dos Invertebrados/fisiologia , Neurônios/fisiologia , Neurotransmissores/fisiologia , Piloro/fisiologia
4.
J Biomed Mater Res A ; 69(3): 373-81, 2004 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15127383

RESUMO

Tissue engineering represents a potential method for repairing damaged skeletal muscle tissue. Extracellular matrix (ECM) proteins were evaluated for their ability to aid in cell attachment, whereas a poly(L-lactic acid) (PLLA) fiber scaffold was tested as a substrate for the differentiation of human skeletal muscle cells. In comparison to uncoated or gelatin-coated PLLA films, cell attachment increased significantly (p < 0.001) on PLLA films coated with ECM gel, fibronectin, or laminin. Myoblasts differentiated into multinucleated myofibers on ECM gel-coated PLLA fibers, and expressed muscle markers such as myosin and alpha-actinin. Oligonucleotide microarray analysis showed similar gene expression profiles for human skeletal muscle cells on ECM gel-coated PLLA fibers as to that observed for myofibers on tissue culture plates. Therefore, PLLA fibers coated with ECM proteins provide a scaffold for the development of skeletal muscle tissue for tissue engineering and cell transplantation applications.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Proteínas da Matriz Extracelular/metabolismo , Ácido Láctico/metabolismo , Músculo Esquelético/citologia , Mioblastos Esqueléticos , Polímeros/metabolismo , Animais , Adesão Celular/fisiologia , Linhagem Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Ácido Láctico/química , Teste de Materiais , Camundongos , Músculo Esquelético/fisiologia , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Poliésteres , Polímeros/química , Propriedades de Superfície , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA