RESUMO
Electrical stimulation (ES) of cellular systems can be utilized for biotechnological applications and electroceuticals (bioelectric medicine). Neural cell stimulation especially has a long history in neuroscience research and is increasingly applied for clinical therapies. Application of ES via conventional electrodes requires external connectors and power sources, hindering scientific and therapeutic applications. Here engineering novel 3D scaffold-free human neural stem cell constructs with integrated piezoelectric nanoparticles for enhanced neural tissue induction and function is described. Tetragonal barium titanate (BaTi03) nanoparticles are employed as piezoelectric stimulators prepared as cytocompatible dispersions, incorporated into 3D self-organizing neural spheroids, and activated wirelessly by ultrasound. Ultrasound delivery (low frequency; 40 kHz) is optimized for cell survival, and nanoparticle activation enabled ES throughout the spheroids during differentiation, tissue formation, and maturation. The resultant human neural tissues represent the first example of direct tissue loading with piezoelectric particles for ensuing 3D ultrasound-mediated piezoelectric enhancement of human neuronal induction from stem cells, including augmented neuritogenesis and synaptogenesis. It is anticipated that the platform described will facilitate advanced tissue engineering and in vitro modeling of human neural (and potentially non-neural) tissues, with modeling including tissue development and pathology, and applicable to preclinical testing and prototyping of both electroceuticals and pharmaceuticals.
RESUMO
Free flap surgery is currently the only successful method used by surgeons to reconstruct critical-sized defects of the jaw, and is commonly used in patients who have had bony lesions excised due to oral cancer, trauma, infection or necrosis. However, donor site morbidity remains a significant flaw of this strategy. Various biomaterials have been under investigation in search of a suitable alternative for segmental mandibular defect reconstruction. Hydrogels are group of biomaterials that have shown their potential in various tissue engineering applications, including bone regeneration, both through in vitro and in vivo pre-clinical animal trials. This review discusses different types of hydrogels, their fabrication techniques, 3D printing, their potential for bone regeneration, outcomes, and the limitations of various hydrogels in preclinical models for bone tissue engineering. This review also proposes a modified technique utilizing the potential of hydrogels combined with scaffolds and cells for efficient reconstruction of mandibular segmental defects.
RESUMO
Induced pluripotent stem cells (iPSCs) are providing unprecedented insight into complex neuropsychiatric disorders such as schizophrenia (SZ). Here we review the use of iPSCs for investigating the etiopathology and treatment of SZ, beginning with conventional in vitro two-dimensional (2D; monolayer) cell modelling, through to more advanced 3D tissue studies. With the advent of 3D modelling, utilising advanced differentiation paradigms and additive manufacturing technologies, inclusive of patient-specific cerebral/neural organoids and bioprinted neural tissues, such live disease-relevant tissue systems better recapitulate "within-body" tissue function and pathobiology. We posit that by enabling better understanding of biological causality, these evolving strategies will yield novel therapeutic targets and accordingly, drug candidates.
Assuntos
Células-Tronco Pluripotentes Induzidas , Modelos Biológicos , Esquizofrenia/patologia , Esquizofrenia/terapia , Animais , Técnicas de Cultura de Células , Humanos , Programas de Rastreamento , Esquizofrenia/genéticaRESUMO
The regenerative capacity of cardiomyocytes is insufficient to functionally recover damaged tissue, and as such, ischaemic heart disease forms the largest proportion of cardiovascular associated deaths. Human-induced pluripotent stem cells (hiPSCs) have enormous potential for developing patient specific cardiomyocytes for modelling heart disease, patient-based cardiac toxicity testing and potentially replacement therapy. However, traditional protocols for hiPSC-derived cardiomyocytes yield mixed populations of atrial, ventricular and nodal-like cells with immature cardiac properties. New insights gleaned from embryonic heart development have progressed the precise production of subtype-specific hiPSC-derived cardiomyocytes; however, their physiological immaturity severely limits their utility as model systems and their use for drug screening and cell therapy. The long-entrenched challenges in this field are being addressed by innovative bioengingeering technologies that incorporate biophysical, biochemical and more recently biomimetic electrical cues, with the latter having the potential to be used to both direct hiPSC differentiation and augment maturation and the function of derived cardiomyocytes and cardiac tissues by mimicking endogenous electric fields.
Assuntos
Coração/fisiologia , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Animais , Bioengenharia , Diferenciação Celular , Estimulação Elétrica , HumanosRESUMO
There is an urgent need for new and advanced approaches to modeling the pathological mechanisms of complex human neurological disorders. This is underscored by the decline in pharmaceutical research and development efficiency resulting in a relative decrease in new drug launches in the last several decades. Induced pluripotent stem cells represent a new tool to overcome many of the shortcomings of conventional methods, enabling live human neural cell modeling of complex conditions relating to aberrant neurodevelopment, such as schizophrenia, epilepsy and autism as well as age-associated neurodegeneration. This review considers the current status of induced pluripotent stem cell-based modeling of neurological disorders, canvassing proven and putative advantages, current constraints, and future prospects of next-generation culture systems for biomedical research and translation.
Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças do Sistema Nervoso/terapia , HumanosRESUMO
The International Stem Cell Banking Initiative (ISCBI) aims to create a global network of stem cell banks to facilitate best practice in stem cell research and clinical cell delivery, primary objectives of national and local governments worldwide and stem cell organizations such the International Stem Cell Forum and the International Society of Stem Cell Research. This paper is a brief overview of ISCBI, its primary activities, potential network participants, and the challenges for harmonizing stem cell banking on a global level.
Assuntos
Cooperação Internacional , Células-Tronco/citologia , Bancos de Tecidos/normas , HumanosRESUMO
The Singapore Stem Cell Bank has generated human embryonic stem cell banks from clinical-grade cell lines ESI-017, ESI-035, ESI-049, and ESI-053. All banks were prepared and characterized according to principles of Good Laboratory Practice for quality assurance. Importantly, each cell line has clearly documented and approved ethical provenance and meets recognized standards for performance and safety. The banks are intended to facilitate the translation of stem cell research to clinical medicine by enabling early phase research and development with high-quality, low-cost cells that are also available as clinical-grade stocks.
Assuntos
Técnicas de Cultura de Células/métodos , Pesquisas com Embriões , Células-Tronco Embrionárias/citologia , Bancos de Tecidos/normas , Biomarcadores/metabolismo , Diferenciação Celular/genética , Linhagem Celular , Citometria de Fluxo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imuno-Histoquímica , Cariotipagem , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
The availability of human stem cells heralds a new era for modeling normal and pathologic tissues and developing therapeutics. For example, the in vitro recapitulation of normal and aberrant neurogenesis holds significant promise as a tool for de novo modeling of neurodevelopmental and neurodegenerative diseases. Translational applications include deciphering brain development, function, pathologies, traditional medications, and drug discovery for novel pharmacotherapeutics. For the latter, human stem cell-based assays represent a physiologically relevant and high-throughput means to assess toxicity and other undesirable effects early in the drug development pipeline, avoiding late-stage attrition whilst expediting proof-of-concept of genuine drug candidates. Here we consider the potential of human embryonic, adult, and induced pluripotent stem cells for studying neurological disorders and preclinical drug development.
Assuntos
Doenças do Sistema Nervoso/tratamento farmacológico , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Neurogênese , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Medicina Regenerativa/métodos , Transplante de Células-Tronco , Células-Tronco/citologiaRESUMO
The use of human embryonic stem cells (hESCs) for cell-based therapies will require large quantities of genetically stable pluripotent cells and their differentiated progeny. Traditional hESC propagation entails adherent culture and is sensitive to enzymatic dissociation. These constraints hamper modifying method from 2-dimensional flat-bed culture, which is expensive and impractical for bulk cell production. Large-scale culture for clinical use will require innovations such as suspension culture for bioprocessing. Here we describe the attachment and growth kinetics of both murine embryonic stem cells (mESCs) and hESCs on trimethyl ammonium-coated polystyrene microcarriers for feeder-free, 3-dimensional suspension culture. mESCs adhered and expanded according to standard growth kinetics. For hESC studies, we tested aggregate (collagenase-dissociated) and single-cell (TrypLE-dissociated) culture. Cells attached rapidly to beads followed by proliferation. Single-cell cultures expanded 3-fold over approximately 5 days, slightly exceeding that of hESC aggregates. Importantly, single-cell cultures were maintained through 6 passages with a 14-fold increase in cell number while still expressing the undifferentiated markers Oct-4 and Tra 1-81. Finally, hESCs retained their capacity to differentiate towards pancreatic, neuronal, and cardiomyocyte lineages. Our studies provide proof-of-principle of suspension-based expansion of hESCs on microcarriers, as a novel, economical and practical feeder-free means of bulk hESC production.
Assuntos
Técnicas de Cultura de Células/instrumentação , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Engenharia Tecidual/métodos , Adesão Celular , Técnicas de Cultura de Células/métodos , Proliferação de Células , Células Cultivadas , Desenho de Equipamento , Análise de Falha de Equipamento , HumanosRESUMO
Human embryonic stem cells hold considerable potential for cell-based treatments of a variety of degenerative diseases, including diabetes, ischemic heart failure, and Parkinson's disease. However, advancing research to provide clinical-grade product requires scale-up to therapeutic quantities of stem cells and their differentiated progeny. Most human embryonic stem cell culture platforms require direct support by a fibroblast feeder layer or indirect support using fibroblast conditioned medium. Accordingly, large numbers of clinically compliant fibroblasts will be requisite for stem cell production. Published platforms for feeder production are insufficient for stem cell scale-up, being costly to operate and requiring considerable effort to prepare, maintain and harvest. Here we describe the expansion of cGMP-grade, FDA-approved human foreskin fibroblasts using cGMP-grade reagents and polystyrene-based cationic trimethyl ammonium-coated microcarriers in spinner flasks. Fibroblasts attach rapidly to the microcarriers (T(1/2)=75 min), and expand with a maximum doubling time of 22.5h. Importantly, microcarrier-expanded fibroblasts and their conditioned medium support pluripotent stem cell growth through >5 passages, enabling extended self-renewal and expansion while retaining full differentiation potential. In summary, the method described is an economical and cGMP-compliant means of producing human fibroblast cells in support of cGMP human embryonic stem cell culture.