Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Med Chem ; 66(14): 9954-9971, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37436942

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a major unmet medical need with limited treatment options. Despite different mechanisms of action, diverse chemotherapeutics can cause CIPN through a converged pathway─an active axon degeneration program that engages the dual leucine zipper kinase (DLK). DLK is a neuronally enriched kinase upstream in the MAPK-JNK cascade, and while it is dormant under physiological conditions, DLK mediates a core mechanism for neuronal injury response under stress conditions, making it an attractive target for treatment of neuronal injury and neurodegenerative diseases. We have developed potent, selective, brain penetrant DLK inhibitors with excellent PK and activity in mouse models of CIPN. Lead compound IACS-52825 (22) showed strongly effective reversal of mechanical allodynia in a mouse model of CIPN and was advanced into preclinical development.


Assuntos
Antineoplásicos , Doenças do Sistema Nervoso Periférico , Camundongos , Animais , Neurônios , Sistema de Sinalização das MAP Quinases , Encéfalo/metabolismo , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Antineoplásicos/efeitos adversos , MAP Quinase Quinase Quinases
2.
Front Pharmacol ; 13: 891041, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814209

RESUMO

The so-called primary interface between the SNARE complex and synaptotagmin-1 (Syt1) is essential for Ca2+-triggered neurotransmitter release in neuronal synapses. The interacting residues of the primary interface are conserved across different species for synaptotagmins (Syt1, Syt2, Syt9), SNAP-25, and syntaxin-1A homologs involved in fast synchronous release. This Ca2+-independent interface forms prior to Ca2+-triggering and plays a role in synaptic vesicle priming. This primary interface is also conserved in the fusion machinery that is responsible for mucin granule membrane fusion. Ca2+-stimulated mucin secretion is mediated by the SNAREs syntaxin-3, SNAP-23, VAMP8, Syt2, and other proteins. Here, we designed and screened a series of hydrocarbon-stapled peptides consisting of SNAP-25 fragments that included some of the key residues involved in the primary interface as observed in high-resolution crystal structures. We selected a subset of four stapled peptides that were highly α-helical as assessed by circular dichroism and that inhibited both Ca2+-independent and Ca2+-triggered ensemble lipid-mixing with neuronal SNAREs and Syt1. In a single-vesicle content-mixing assay with reconstituted neuronal SNAREs and Syt1 or with reconstituted airway SNAREs and Syt2, the selected peptides also suppressed Ca2+-triggered fusion. Taken together, hydrocarbon-stapled peptides that interfere with the primary interface consequently inhibit Ca2+-triggered exocytosis. Our inhibitor screen suggests that these compounds may be useful to combat mucus hypersecretion, which is a major cause of airway obstruction in the pathophysiology of COPD, asthma, and cystic fibrosis.

3.
Cancer Cell ; 40(7): 754-767.e6, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820397

RESUMO

We report a phase II study of 50 advanced non-small cell lung cancer (NSCLC) patients with point mutations or insertions in EGFR exon 20 treated with poziotinib (NCT03066206). The study achieved its primary endpoint, with confirmed objective response rates (ORRs) of 32% and 31% by investigator and blinded independent review, respectively, with a median progression-free survival of 5.5 months. Using preclinical studies, in silico modeling, and molecular dynamics simulations, we found that poziotinib sensitivity was highly dependent on the insertion location, with near-loop insertions (amino acids A767 to P772) being more sensitive than far-loop insertions, an observation confirmed clinically with ORRs of 46% and 0% observed in near versus far-loop, respectively (p = 0.0015). Putative mechanisms of acquired resistance included EGFR T790M, MET amplifications, and epithelial-to-mesenchymal transition (EMT). Our data demonstrate that poziotinib is active in EGFR exon 20-mutant NSCLC, although this activity is influenced by insertion location.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Éxons/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinas , Resultado do Tratamento
4.
Drug Discov Today ; 27(4): 967-984, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34838731

RESUMO

Artificial intelligence (AI) is becoming an integral part of drug discovery. It has the potential to deliver across the drug discovery and development value chain, starting from target identification and reaching through clinical development. In this review, we provide an overview of current AI technologies and a glimpse of how AI is reimagining preclinical drug discovery by highlighting examples where AI has made a real impact. Considering the excitement and hyperbole surrounding AI in drug discovery, we aim to present a realistic view by discussing both opportunities and challenges in adopting AI in drug discovery.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Descoberta de Drogas
5.
J Med Chem ; 64(20): 15141-15169, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34643390

RESUMO

Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2) plays a role in receptor tyrosine kinase (RTK), neurofibromin-1 (NF-1), and Kirsten rat sarcoma virus (KRAS) mutant-driven cancers, as well as in RTK-mediated resistance, making the identification of small-molecule therapeutics that interfere with its function of high interest. Our quest to identify potent, orally bioavailable, and safe SHP2 inhibitors led to the discovery of a promising series of pyrazolopyrimidinones that displayed excellent potency but had a suboptimal in vivo pharmacokinetic (PK) profile. Hypothesis-driven scaffold optimization led us to a series of pyrazolopyrazines with excellent PK properties across species but a narrow human Ether-à-go-go-Related Gene (hERG) window. Subsequent optimization of properties led to the discovery of the pyrimidinone series, in which multiple members possessed excellent potency, optimal in vivo PK across species, and no off-target activities including no hERG liability up to 100 µM. Importantly, compound 30 (IACS-15414) potently suppressed the mitogen-activated protein kinase (MAPK) pathway signaling and tumor growth in RTK-activated and KRASmut xenograft models in vivo.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Humanos , Camundongos , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Relação Estrutura-Atividade
6.
Nature ; 597(7878): 732-737, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34526717

RESUMO

Epidermal growth factor receptor (EGFR) mutations typically occur in exons 18-21 and are established driver mutations in non-small cell lung cancer (NSCLC)1-3. Targeted therapies are approved for patients with 'classical' mutations and a small number of other mutations4-6. However, effective therapies have not been identified for additional EGFR mutations. Furthermore, the frequency and effects of atypical EGFR mutations on drug sensitivity are unknown1,3,7-10. Here we characterize the mutational landscape in 16,715 patients with EGFR-mutant NSCLC, and establish the structure-function relationship of EGFR mutations on drug sensitivity. We found that EGFR mutations can be separated into four distinct subgroups on the basis of sensitivity and structural changes that retrospectively predict patient outcomes following treatment with EGFR inhibitors better than traditional exon-based groups. Together, these data delineate a structure-based approach for defining functional groups of EGFR mutations that can effectively guide treatment and clinical trial choices for patients with EGFR-mutant NSCLC and suggest that a structure-function-based approach may improve the prediction of drug sensitivity to targeted therapies in oncogenes with diverse mutations.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Afatinib/uso terapêutico , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Reposicionamento de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/genética , Éxons , Feminino , Humanos , Neoplasias Pulmonares/genética , Camundongos , Simulação de Acoplamento Molecular , Mutação , Relação Estrutura-Atividade
7.
J Med Chem ; 64(15): 11302-11329, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34292726

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1), a heme-containing enzyme that mediates the rate-limiting step in the metabolism of l-tryptophan to kynurenine, has been widely explored as a potential immunotherapeutic target in oncology. We developed a class of inhibitors with a conformationally constrained bicyclo[3.1.0]hexane core. These potently inhibited IDO1 in a cellular context by binding to the apoenzyme, as elucidated by biochemical characterization and X-ray crystallography. A SKOV3 tumor model was instrumental in differentiating compounds, leading to the identification of IACS-9779 (62) and IACS-70465 (71). IACS-70465 has excellent cellular potency, a robust pharmacodynamic response, and in a human whole blood assay was more potent than linrodostat (BMS-986205). IACS-9779 with a predicted human efficacious once daily dose below 1 mg/kg to sustain >90% inhibition of IDO1 displayed an acceptable safety margin in rodent toxicology and dog cardiovascular studies to support advancement into preclinical safety evaluation for human development.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade
8.
Sci Adv ; 7(20)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33990335

RESUMO

Mitochondrial complex I (NADH:ubiquinone oxidoreductase), a major contributor of free energy for oxidative phosphorylation, is increasingly recognized as a promising drug target for ischemia-reperfusion injury, metabolic disorders, and various cancers. Several pharmacologically relevant but structurally unrelated small molecules have been identified as specific complex I inhibitors, but their modes of action remain unclear. Here, we present a 3.0-Å resolution cryo-electron microscopy structure of mammalian complex I inhibited by a derivative of IACS-010759, which is currently in clinical development against cancers reliant on oxidative phosphorylation, revealing its unique cork-in-bottle mechanism of inhibition. We combine structural and kinetic analyses to deconvolute cross-species differences in inhibition and identify the structural motif of a "chain" of aromatic rings as a characteristic that promotes inhibition. Our findings provide insights into the importance of π-stacking residues for inhibitor binding in the long substrate-binding channel in complex I and a guide for future biorational drug design.

9.
Cancer Res ; 80(21): 4840-4853, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32928921

RESUMO

Src homology 2 domain-containing phosphatase (SHP2) is a phosphatase that mediates signaling downstream of multiple receptor tyrosine kinases (RTK) and is required for full activation of the MAPK pathway. SHP2 inhibition has demonstrated tumor growth inhibition in RTK-activated cancers in preclinical studies. The long-term effectiveness of tyrosine kinase inhibitors such as the EGFR inhibitor (EGFRi), osimertinib, in non-small cell lung cancer (NSCLC) is limited by acquired resistance. Multiple clinically identified mechanisms underlie resistance to osimertinib, including mutations in EGFR that preclude drug binding as well as EGFR-independent activation of the MAPK pathway through alternate RTK (RTK-bypass). It has also been noted that frequently a tumor from a single patient harbors more than one resistance mechanism, and the plasticity between multiple resistance mechanisms could restrict the effectiveness of therapies targeting a single node of the oncogenic signaling network. Here, we report the discovery of IACS-13909, a specific and potent allosteric inhibitor of SHP2, that suppresses signaling through the MAPK pathway. IACS-13909 potently impeded proliferation of tumors harboring a broad spectrum of activated RTKs as the oncogenic driver. In EGFR-mutant osimertinib-resistant NSCLC models with EGFR-dependent and EGFR-independent resistance mechanisms, IACS-13909, administered as a single agent or in combination with osimertinib, potently suppressed tumor cell proliferation in vitro and caused tumor regression in vivo. Together, our findings provide preclinical evidence for using a SHP2 inhibitor as a therapeutic strategy in acquired EGFRi-resistant NSCLC. SIGNIFICANCE: These findings highlight the discovery of IACS-13909 as a potent, selective inhibitor of SHP2 with drug-like properties, and targeting SHP2 may serve as a therapeutic strategy to overcome tumor resistance to osimertinib.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Experimentais/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Mutação , Neoplasias Experimentais/genética , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Med Chem ; 63(17): 9888-9911, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32787110

RESUMO

Tumor-associated macrophages (TAMs) have a significant presence in the tumor stroma across multiple human malignancies and are believed to be beneficial to tumor growth. Targeting CSF1R has been proposed as a potential therapy to reduce TAMs, especially the protumor, immune-suppressive M2 TAMs. Additionally, the high expression of CSF1R on tumor cells has been associated with poor survival in certain cancers, suggesting tumor dependency and therefore a potential therapeutic target. The CSF1-CSF1R signaling pathway modulates the production, differentiation, and function of TAMs; however, the discovery of selective CSF1R inhibitors devoid of type III kinase activity has proven to be challenging. We discovered a potent, highly selective, and orally bioavailable CSF1R inhibitor, IACS-9439 (1). Treatment with 1 led to a dose-dependent reduction in macrophages, promoted macrophage polarization toward the M1 phenotype, and led to tumor growth inhibition in MC38 and PANC02 syngeneic tumor models.


Assuntos
Antineoplásicos/uso terapêutico , Benzotiazóis/uso terapêutico , Neoplasias/tratamento farmacológico , Pirimidinas/uso terapêutico , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Benzotiazóis/síntese química , Benzotiazóis/farmacocinética , Estabilidade de Medicamentos , Humanos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/farmacocinética , Relação Estrutura-Atividade , Células THP-1 , Macrófagos Associados a Tumor/efeitos dos fármacos
12.
Cancer Cell ; 36(4): 444-457.e7, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31588020

RESUMO

We characterized the landscape and drug sensitivity of ERBB2 (HER2) mutations in cancers. In 11 datasets (n = 211,726), ERBB2 mutational hotspots varied across 25 tumor types. Common HER2 mutants yielded differential sensitivities to eleven EGFR/HER2 tyrosine kinase inhibitors (TKIs) in vitro, and molecular dynamics simulations revealed that mutants with a reduced drug-binding pocket volume were associated with decreased affinity for larger TKIs. Overall, poziotinib was the most potent HER2 mutant-selective TKI tested. Phase II clinical testing in ERBB2 exon 20-mutant non-small cell lung cancer resulted in a confirmed objective response rate of 42% in the first 12 evaluable patients. In pre-clinical models, poziotinib upregulated HER2 cell-surface expression and potentiated the activity of T-DM1, resulting in complete tumor regression with combination treatment.


Assuntos
Ado-Trastuzumab Emtansina/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias/tratamento farmacológico , Quinazolinas/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Ado-Trastuzumab Emtansina/uso terapêutico , Adulto , Animais , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Análise Mutacional de DNA , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Neoplasias/genética , Neoplasias/mortalidade , Neoplasias/patologia , Intervalo Livre de Progressão , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinas/uso terapêutico , Receptor ErbB-2/genética
13.
Nat Med ; 24(7): 1036-1046, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29892070

RESUMO

Metabolic reprograming is an emerging hallmark of tumor biology and an actively pursued opportunity in discovery of oncology drugs. Extensive efforts have focused on therapeutic targeting of glycolysis, whereas drugging mitochondrial oxidative phosphorylation (OXPHOS) has remained largely unexplored, partly owing to an incomplete understanding of tumor contexts in which OXPHOS is essential. Here, we report the discovery of IACS-010759, a clinical-grade small-molecule inhibitor of complex I of the mitochondrial electron transport chain. Treatment with IACS-010759 robustly inhibited proliferation and induced apoptosis in models of brain cancer and acute myeloid leukemia (AML) reliant on OXPHOS, likely owing to a combination of energy depletion and reduced aspartate production that leads to impaired nucleotide biosynthesis. In models of brain cancer and AML, tumor growth was potently inhibited in vivo following IACS-010759 treatment at well-tolerated doses. IACS-010759 is currently being evaluated in phase 1 clinical trials in relapsed/refractory AML and solid tumors.


Assuntos
Neoplasias/patologia , Fosforilação Oxidativa , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Metabolismo Energético , Glicólise/efeitos dos fármacos , Células HEK293 , Humanos , Ácido Láctico/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Mitocôndrias/metabolismo , Nucleotídeos/biossíntese , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Comput Aided Mol Des ; 32(4): 573-582, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29582229

RESUMO

Antagonism of CCR9 is a promising mechanism for treatment of inflammatory bowel disease, including ulcerative colitis and Crohn's disease. There is limited experimental data on CCR9 and its ligands, complicating efforts to identify new small molecule antagonists. We present here results of a successful virtual screening and rational hit-to-lead campaign that led to the discovery and initial optimization of novel CCR9 antagonists. This work uses a novel data fusion strategy to integrate the output of multiple computational tools, such as 2D similarity search, shape similarity, pharmacophore searching, and molecular docking, as well as the identification and incorporation of privileged chemokine fragments. The application of various ranking strategies, which combined consensus and parallel selection methods to achieve a balance of enrichment and novelty, resulted in 198 virtual screening hits in total, with an overall hit rate of 18%. Several hits were developed into early leads through targeted synthesis and purchase of analogs.


Assuntos
Simulação por Computador , Simulação de Acoplamento Molecular/métodos , Receptores CCR/agonistas , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Ligantes , Estrutura Molecular , Análise de Componente Principal , Receptores CXCR4/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade
15.
Methods Mol Biol ; 1705: 233-264, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29188566

RESUMO

Virtual screening (VS) has become an integral part of the drug discovery process and is a valuable tool for finding novel chemical starting points for GPCR targets. Ligand-based VS makes use of biochemical data for known, active compounds and has been applied successfully to many diverse GPCRs. Recent progress in GPCR X-ray crystallography has made it possible to incorporate detailed structural information into the VS process. This chapter outlines the latest VS techniques along with examples that highlight successful applications of these methods. Best practices for increasing the likelihood of VS success, as well as ongoing challenges, are also discussed.


Assuntos
Descoberta de Drogas , Ligantes , Modelos Moleculares , Receptores Acoplados a Proteínas G/química , Descoberta de Drogas/métodos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Fluxo de Trabalho
16.
Bioorg Med Chem Lett ; 27(8): 1670-1680, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28302397

RESUMO

The emergence and spread of multidrug-resistant (MDR) Gram negative bacteria presents a serious threat for public health. Novel antimicrobials that could overcome the resistance problems are urgently needed. UDP-3-O-(R-3-hydroxymyristol)-N-acetylglucosamine deacetylase (LpxC) is a cytosolic zinc-based deacetylase that catalyzes the first committed step in the biosynthesis of lipid A, which is essential for the survival of Gram-negative bacteria. Our efforts toward the discovery of novel LpxC inhibitors are presented herein.


Assuntos
Amidoidrolases/antagonistas & inibidores , Antibacterianos/química , Antibacterianos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/enzimologia , Amidoidrolases/metabolismo , Descoberta de Drogas , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Humanos , Simulação de Acoplamento Molecular
17.
ACS Med Chem Lett ; 7(4): 374-8, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27096044

RESUMO

The ATPase subunit of DNA gyrase B is an attractive antibacterial target due to high conservation across bacteria and the essential role it plays in DNA replication. A novel class of pyrazolopyridone inhibitors was discovered by optimizing a fragment screening hit scaffold using structure guided design. These inhibitors show potent Gram-positive antibacterial activity and low resistance incidence against clinically important pathogens.

18.
Bioorg Med Chem Lett ; 26(6): 1503-1507, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26898335

RESUMO

Structure based design of a novel class of aminopyrimidine MTH1 (MutT homolog 1) inhibitors is described. Optimization led to identification of IACS-4759 (compound 5), a sub-nanomolar inhibitor of MTH1 with excellent cell permeability and good metabolic stability in microsomes. This compound robustly inhibited MTH1 activity in cells and proved to be an excellent tool for interrogation of the utility of MTH1 inhibition in the context of oncology.


Assuntos
Enzimas Reparadoras do DNA/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Enzimas Reparadoras do DNA/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Monoéster Fosfórico Hidrolases/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
19.
Bioorg Med Chem Lett ; 26(4): 1314-8, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26786695

RESUMO

Inhibitors of the ATPase function of bacterial DNA gyrase, located in the GyrB subunit and its related ParE subunit in topoisomerase IV, have demonstrated antibacterial activity. In this study we describe an NMR fragment-based screening effort targeting Staphylococcus aureus GyrB that identified several attractive and novel starting points with good ligand efficiency. Fragment hits were further characterized using NMR binding studies against full-length S. aureus GyrB and Escherichia coli ParE. X-ray co-crystal structures of select fragment hits confirmed binding and suggested a path for medicinal chemistry optimization. The identification, characterization, and elaboration of one of these fragment series to a 0.265 µM inhibitor is described herein.


Assuntos
Antibacterianos/química , Proteínas de Bactérias/antagonistas & inibidores , DNA Girase/química , Inibidores da Topoisomerase II/química , Adenosina Trifosfatases/metabolismo , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , DNA Girase/metabolismo , DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerase IV/metabolismo , Desenho de Fármacos , Escherichia coli/metabolismo , Ligantes , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Staphylococcus aureus/enzimologia , Inibidores da Topoisomerase II/metabolismo
20.
J Med Chem ; 58(21): 8503-12, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26460684

RESUMO

The emergence and spread of multidrug resistant bacteria are widely believed to endanger human health. New drug targets and lead compounds exempt from cross-resistance with existing drugs are urgently needed. We report on the discovery of azaindole ureas as a novel class of bacterial gyrase B inhibitors and detail the story of their evolution from a de novo design hit based on structure-based drug design. These inhibitors show potent minimum inhibitory concentrations against fluoroquinolone resistant MRSA and other Gram-positive bacteria.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , DNA Girase/metabolismo , Indóis/farmacologia , Staphylococcus aureus Resistente à Meticilina/enzimologia , Inibidores da Topoisomerase II/farmacologia , Ureia/farmacologia , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/enzimologia , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Indóis/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Modelos Moleculares , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Inibidores da Topoisomerase II/química , Ureia/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA